

THE UNIFRAME .NET

WEB SERVICE DISCOVERY SERVICE

TR-CIS-0630-03

Robert W. Berbeco June 27, 2003

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
JUN 2003 2. REPORT TYPE

3. DATES COVERED
 00-00-2003 to 00-00-2003

4. TITLE AND SUBTITLE
The Uniframe .Net Web Service Discovery Service

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Indiana University/Purdue University,Department of Computer and
Information Sciences,Indianapolis,IN,46202

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
see report

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

124

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

THE UNIFRAME .NET WEB SERVICE DISCOVERY SERVICE

A Technical Report

Report Number

TR-CIS-0630-03

Submitted to the Faculty

Of Purdue University

By

Robert W. Berbeco

In Partial Fulfillment of the

Requirements for the Degree

of

Master of Science

June 2003

ii

To Paula.

iii

ACKNOWLEDGMENTS

During the time I spent being a graduate student at the Department of Computer

and Information Science, Indiana University-Purdue University-Indianapolis I received

support from many different individuals on many levels. My debt of gratitude is spread

among my family, other graduate students within the department, and my professors at

Indiana University-Purdue University-Indianapolis.

To begin, deep thanks to Professor Rajeev R. Raje, my academic advisor, for his

support and willingness to guide me through my graduate program. His advice and

knowledge were invaluable, and I truly appreciated his ability to challenge me to always

complete my graduate work to the best of my abilities. I have learned a lot from Dr. Raje,

both personally and professionally, and what I learned has helped me to grow as a person.

These lessons were taken to heart and will be with me for a very long time.

I would like to thank my wife, Paula Berbeco, for her limitless support, patience,

understanding, and willingness to listen and respond to me as I worked my way through

the coursework for my master’s degree and this project.

I would like to thank Professor Yung-Ping Chien and Professor Andrew Olson for

taking their time to be on my graduate committee.

Special thanks to Natasha Gupta, a graduate student in the Department of

Computer and Information Science program. Her comments and insight were helpful.

I would like to thank the U.S. Department of Defense and the U.S. Office of

Naval Research for supporting this research under the award number N00014-01-1-0746.

I also would like to thank the faculty, staff, and other students at the Department

of Computer and Information Science for their kindness and conversations during my

time spent within the department. I will cherish these memories.

iv

TABLE OF CONTENTS

TABLE OF CONTENTS... iv

LIST OF TABLES... vi

LIST OF FIGURES... vii

ABSTRACT... viii

1. INTRODUCTION…………………………………………………………………... 1

 1.1 Motivation……………………………………………………………………… 2

 1.2 Objectives……………………………………………………………………… 3

 1.3 Contributions…………………………………………………………………... 4

 1.4 Organization of this report…..…………………………………………………. 5

2. BACKGROUND AND RELATED WORK…………………………….………….. 6

 2.1 Microsoft .NET………………………………………………………………… 6

 2.1.1 Internet Information Server (IIS)…………………………………..…….. 7

 2.1.1.1 IIS Security………………………………………………………. 8

 2.1.1.2 Virtual Directories……………………………………………….. 9

 2.1.2 Web services……………………………………………………………... 9

 2.3.3 ASP.NET…………………………...……………………………………. 12

 2.2 UniFrame………………………………………………………………………..14

 2.3 Discovery………………………………………………………………………. 16

 2.3.1 Universal Description, Discovery, and Integration (UDDI) Service…….. 17

 2.3.2 Web Services Inspection Language (WSIL)……………………………...19

 2.3.3 Discovery of Web Services (DISCO)……………………………………. 20

3. ARCHITECTURE…………………………………………………………………... 23

 3.1 URDS Architecture Overview…………………………………………………. 23

 3.2 Design Details………………………………………………………………….. 26

 3.2.1 Query Manager (QM)……………………………………………………. 26

v

 3.2.2 Headhunters (HH)……………………………………………………….. 33

 3.2.3 Meta-Repository (MR)……………………………………………………40

 3.2.4 Active Registry (AR)…………………………………………………….. 41

 3.3 Implementation………………………………………………………………… 41

 3.3.1 Technology Used………………………………………………………… 41

 3.3.2 Prototype Implementation…...…………………………………………… 43

 3.3.2.1 Environment……………………………………………………… 44

 3.3.2.2 Communication…………………………………………………... 45

 3.3.2.3 Security…………………………………………………………... 45

 3.3.2.4 Programming……………………………………………………...46

 3.3.2.4.1 Service Objects………………………………………… 46

 3.3.2.4.2 Database Objects………………………………………. 49

 3.3.2.4.3 User Interface………………………………………….. 50

4. VALIDATION……………………………………………………………………… 55

 4.1 Experimentations………………………………………………………………. 55

 4.2 Results…………………………………………………………………………. 56

5. CONCLUSION AND FUTURE WORK…………………………………………… 63

LIST OF REFERENCES………………………………………………………………. 65

APPENDIX…………………………………………………………………………….. 67

 Source Code………………………………………………………………………... 67

vi

LIST OF TABLES

Table Page

Table 3.1 Description of URDS Components (from [4])……………………………… 23

Table 3.2 Data structures used for QM functions…….………………………………... 28

Table 3.3 Data structures used for Headhunters……………………………………..... 35

Table 4.1 Number of incoming queries vs. Average Response Time with all HHs…… 57

Table 4.2 Number of Web services vs. Average Response Time……………………… 59

Table 4.3 Number of HHs vs. Average Response Time……………………………….. 60

vii

LIST OF FIGURES

Figure Page

Figure 2.1 .NET three-tier system (from [15])………………………………………….6

Figure 2.2 A client invoking a Web service via SOAP (from [8]).…………………... 10

Figure 2.3 ASP and ASP.NET Architecture…………………………………………… 12

Figure 2.4 .NET Architecture (from [14])……………………………………………... 13

Figure 2.5 URDS Architecture (from [4])……………………………………………... 15

Figure 2.6 businessEntity structure (from [9])…………………………………………. 18

Figure 3.1 URDS architecture (from [4])……………………………………………… 25

Figure 3.2 UNWSDS Implementation…………………………………………………. 44

Figure 3.3 Class Diagrams for the UNWSDS Services..………………………………. 46

Figure 3.4 Class Diagrams for the Domain Services......………………………………. 48

Figure 3.5 Class Diagrams for Database Objects……………………………………… 49

Figure 3.6 UniFrameIndex.aspx……………………………………………………….. 51

Figure 3.7 UniFrameQuery.htm……………………………………………………….. 51

Figure 3.8 ComponentList.aspx………………………………………………………... 52

Figure 3.9 GetCustomerAccountsClient.aspx…………………………………………. 52

Figure 3.10 GetInventoryAccountsClient.aspx………………………………………… 53

Figure 3.11 BankDataSvc.asmx………………………………………………………... 53

Figure 3.12 InventoryDataSvc.asmx…………………………………………………… 54

Figure 3.13 ComponentControl.aspx…………………………………………………... 54

Figure 4.1 Number of incoming queries vs. Average Response Time with all HHs...... 57

Figure 4.2 Number of Web services vs. Average Response Time…………………….. 59

Figure 4.3 Number of HHs vs. Average Response Time……………………………… 60

viii

ABSTRACT

Berbeco, Robert W., M.S., Purdue University, June, 2003. “The UniFrame .NET Web

Service Discovery Service”. Major Professor: Rajeev Raje

Microsoft .NET allows the creation of distributed systems in a seamless manner.

Within .NET small, discrete applications, referred to as Web services, are utilized to

connect to each other or larger applications over a local or wide area network connection

through HTTP. The Web services are written in Extensible Markup Language (XML)

and registered with Internet Information Server (IIS), and can be applied in numerous

fashions. This project uses the .NET capabilities to create a distributed discovery service

(called as UNWSDS) that is an integral part of the UniFrame Approach. The UniFrame

Approach (UA) provides a comprehensive framework which incorporates a meta-

component model; a resource discovery service, called the UniFrame Resource

Discovery Service (URDS); and generative programming and Quality of Service (QoS)

to allow seamless interoperation of heterogeneous distributed components. The proposed

UNWSDS incorporates the extensibility of Microsoft .NET through XML web services

and distributed MS SQL 2000 servers into the URDS. A prototype is designed and

implemented to validate the proposed UNWSDS. The results of this approach enable

extending of UniFrame to incorporate .NET as another component model in it.

 1

INTRODUCTION

As the Internet becomes more useful in today’s world, users are, in turn,

becoming reliant on Web-based services to fulfill our daily tasks. Along with the

increased use of Web-based services comes the difficulty of locating the services and

coordinating their usage; because in real Internet Web conditions, services are

undiscovered, new and coming or going rapidly.

The ability to coordinate the usage of randomly distributed Web services across

the Internet does not exist 1) since there are no set specifications in place for integrating

all the information or locations of the individual Web services, and 2) because of the

complexity required to develop the code to integrate these services [2].

Web services represent a paradigm shift from software in shrink-wrapped boxes

to components or services that interested users could consume over the Internet. The Web

services would be distributed across the Internet and interested users would locate and

consume these services if they wanted to. The Web services could be available free,

through subscription, or on a pay-per-use basis. In the past couple of years the interest in

and utilization of Web services has grown considerably, leading to the introduction of

development packages that take advantage of Web service capabilities. Some of these

development packages include: 1) the Sun Microsystems, Inc. J2EE version 1.4, which

includes full support for Web services, and the Java Web Services Developer Pack (Java

WSDP) version 1.2, provides Web services capabilities and Java Web services APIs; 2)

the SCO Group, Inc. SCOx which targets developers on the SCO Unix and Linux

platforms; 3) BEA Systems’s WebLogic Platform 8.1 which adds Web services

capabilities to the BEA WebLogic Server 8.1; and 4) Microsoft’s .NET Extensible

Markup Language (XML) Web services which provides a framework for Web services

on Microsoft OS systems. The large market share dominance that the Microsoft OS has

on client workstations in the workplace and at home makes the use of .NET attractive for

companies and individuals looking to quickly extend their Web services to the Internet or

their existing infrastructures.

 2

With the utilization of the .NET Extensible Markup Language (XML) Web

services comes a need for an efficient search and retrieval mechanism, as the user will not

typically know where a service is located. The URDS architecture provides services for

automated discovery and selection of components which meet specific Quality of Service

(QoS) requirements [4]. Not only would just .NET XML Web services be locatable

within the URDS architecture, but also other components that are not developed

specifically for Microsoft-based systems could be found. The incorporation of .NET

within the UniFrame resource discovery framework would result in a robust, scalable,

and transparent method for users to locate and consume .NET XML Web services of their

choosing.

1.1 Motivation

In today’s application development a shift is occurring from the desktop or server

based components to thinner, Web service based clients and components accessible from

the Internet. A Web service is truly a new breed of Web application. A Web service is a

self-contained, self-describing, modular application that can be published, located, and

invoked across the Web in a distributed fashion with the invocation and utilization being

mostly transparent to the user [2]. Once a Web service is deployed, other applications

(and other Web services) can discover and invoke the deployed service. For applications

or other services to use a Web service a dynamic discovery process that is efficient and

secure must be employed. Currently there are several directory-based discovery methods

that exist which are based on a publisher-subscriber model – wherein a service is

registered or published to the directory and other services can subscribe or consume the

service. Examples of some commonly used directory-based discovery methods include:

Lightweight Directory Access Protocol (LDAP) which is an Internet protocol that email

programs use to look up contact information from a server; Domain Name System (DNS)

which is a global network of servers that translate host names such as

www.myserver.com into Internet Protocol (IP) addresses, like 159.1.2.1; Service

Location Protocol (SLP), which is a Novell specific protocol that allows clients to locate

 3

Novell Netware servers and other services on the network; and Universal Description,

Discovery, and Integration (UDDI) which is specifically designed for publishing and

locating Web services [5]. UDDI is based on existing Internet standards, primarily HTTP

and XML, and is platform and implementation neutral. UDDI lacks dynamic discovery.

Instead, it is extremely similar to a telephone book’s white or yellow pages. Businesses

list their services within the directory and clients browse or search the directory for the

services they need. Although the registration process by a publisher can be done

programmatically, the discovery process by a subscriber is not automatic. Either a user

intervention is required or programmers must manually add the Web reference within

their programs.

The motivation for the UNWSDS is as follows: as software begins to shift

towards services instead of packaged programs, there is a need to automate discovery of

these services in order to utilize them. As these services will be distributed randomly

across the Internet in various locations, an infrastructure must be constructed to provide

the capabilities to find and utilize the various available services. For instance, in the case

of .NET XML Web services they can be distributed on numerous Internet Information

Servers (IIS) throughout the world. To be able to utilize these services, a user must be

able to find them and have methods for retrieval and consumption even though the user

may not know where the service is located. With the integration of the concepts and

functionability of Microsoft’s .NET and compact frameworks, the URDS architecture

would fulfill this need as it is designed to provide the infrastructure necessary to support

universal dynamic resource discovery.

1.2 Objectives

This project entails the development of the UniFrame .NET Web Service

Discovery Service (UNWSDS) in which .NET Web services could be located on

desktops, laptops, and embedded devices either on a wired or wireless network.

The specific objectives of this project include:

 4

• To propose the UNWSDS to take the dynamic discovery concepts of the

URDS and implement them for the .NET Web services in Visual Basic.NET.

• To propose methods of discovering and consuming .NET Web services within

the UNWSDS and to provide a user friendly interface for these methods.

• Develop a prototype for the UNWSDS and validate the principles behind the

UNWSDS within the .NET and compact frameworks.

1.3 Contributions

The UNWSDS enables .NET XML Web services to be dynamically discovered

utilizing the UniFrame Approach.

The contributions of this project include:

• The creation of an architecture, the UNWSDS which is based upon the URDS

prototype [4], for the dynamic discovery service utilizing Microsoft’s .NET

and compact frameworks.

• Development of a UNWSDS prototype, wherein .NET XML Web services

and embedded clients are dynamically discovered, written in Visual

Basic.NET. The UNWSDS prototype is the expansion of the original URDS

prototype [4] for the .NET platform.

• Validation of the above mentioned objectives by experimental testing.

 5

1.4 Organization of this report

This project is organized into 5 chapters. The introduction of the motivation,

objectives, and the contributions of the project were presented in this chapter. Chapter 2

surveys related work. Chapter 3 provides an overview, design details, and

implementation of the project. Chapter 4 describes the prototype’s validation by

experimentation. Chapter 5 concludes this project with a discussion of what was

accomplished and future work.

 6

2. BACKGROUND AND RELATED WORK

This chapter provides the background and the related work that have contributed

to the development of the UNWSDS. The related work is divided into three categories:

1) Microsoft .NET, 2) UniFrame, and 3) Discovery services. Section 2.1 discusses

Microsoft .NET which was the platform used to develop the UNWSDS. Section 2.2

describes the UniFrame Approach in which the UNWSDS was modeled for. Section 2.3

describes various discovery services that exist, and how they compare and contrast to the

UNWSDS.

2.1 Microsoft .NET

Microsoft .NET is a framework for developing web-based applications called

Web services. The .NET framework is a three-tiered architecture for developing web-

based applications: 1) the first tier is the Presentation or client-side interaction; 2) the

middle tier is the Business logic tier; 3) and the remaining tier is the Data tier [15]. Figure

2.1 below represents the .NET three tiered system.

Figure 2.1 .NET three-tier system (from [15]).

 7

Conceptually the .NET three tiered system is similar to Enterprise Java Beans

(EJB). In the EJB three tiered system there are EJBs which are Java programs that

complete the data processing of the middle tier and then communicate the results to the

Java Server Pages (JSP) that present the data to the client. Whereas EJBs can only be

written in Java, .NET programs can be written in multiple languages. In .NET, the

programs which complete the data processing of the middle tier are Web services which

can be written in C# or Visual Basic.NET. These Web services would reside on an

Internet Information Server (IIS), which serves Web pages or Active Server Pages (ASP)

and services to clients connecting via HTTP. IIS would fulfill the needs of the

Presentation and Business tiers within the Microsoft .NET three tier model, and the Data

tier could be fulfilled by any number of databases which could include Oracle or MS

SQL.

The UNWSDS is developed using the .NET model with IIS and Web services

fulfilling the role of the Business tier, and ASP.NET is used for the Presentation tier.

Section 2.1.1 describes IIS and its security in detail. Section 2.1.2 describes Web services

and their components. Section 2.1.3 describes ASP.NET.

2.1.1 Internet Information Server (IIS)

Internet Information Server (IIS) is Microsoft’s answer to a Web server. IIS is a

file and web application server that can be used on a local area network (LAN), a wide

area network (WAN), or the Internet. IIS is usually installed as an additional component

to a Microsoft OS server. The main services of IIS are: 1) World Wide Web (WWW), 2)

File Transfer Protocol (FTP), 3) Simple Mail Transfer Protocol (SMTP), and 4) Network

News Transfer Protocol (NNTP). Through the WWW service, IIS supports dynamic and

static Web pages, and supports external data source connections to databases such as

Oracle, MS SQL, or Access. The dynamic Web page content is developed using Active

Server Page (ASP).NET technology, which means that applications such as Web services

can be embedded in Web pages to present result content to clients. IIS is managed

through the Microsoft Management Console (MMC), which is the default management

 8

tool on a Microsoft OS server or workstation and interfaces with the Microsoft Windows

2000/XP server security model for permissions that also support Anonymous, Domain

level, or server (local) level user authentication [16].

2.1.1.1 IIS Security

IIS has various security features to secure access to Web services. As IIS security

is interfaced with Microsoft Windows 2000/XP, it is also integrated with the Kerberos

security infrastructure. Users can be authenticated securely through Kerberos to IIS, and

gain access to Web services or folders that they have permission to view or execute. In

addition to client authentication, IIS can be configured for secure communications

between server and client with Security Sockets Layer (SSL) and Transport Layer

Security (TLS). Through SSL and TLS communication would be encrypted at 128-bit

encryption and the server would verify the client before connection is granted. If further

restrictions are necessary, Internet Protocol addresses and domains could be restricted.

This would restrict certain or a block of computers from connecting to the server. In this

way if IIS was necessary only for a company intranet, but did not need to be accessible

from the Internet the company addresses could be added for access and the remainder

denied.

A very important tool that Microsoft created and is downloadable from their web

site is the IIS Lockdown Tool (currently 2.1). The IIS Lockdown Tool works by turning

off unnecessary features and to provide multiple layers of protection against potential

attackers [17]. When executed, the tool has a wizard interface that simplifies

configuration as the server or IIS administrator would select what their server’s primary

use is, static content or Web services, and then the tool would configure the appropriate

permissions. Another method of increasing IIS security is to configure the Microsoft

Auto-Update feature. This can be scheduled daily to download and install any critical

patches that need to be installed to ward off potential vulnerabilities.

 9

2.1.1.2 Virtual Directories

An IIS virtual directory is a name mapped to a local folder or network share

through the server for external access, and as such the virtual directory name is used for

access instead of the local directory name. The virtual directory would be created through

MMC and would require the following information: 1) name or URL for the virtual

directory, 2) path of the local folder, and 3) Web service access or execute permissions

enforced by IIS. In essence, a virtual directory is the path that an Internet user or

application would use to access a Web service on IIS.

Once IIS has been installed, IIS security configured properly using the IIS

Lockdown Tool, and potential critical updates applied with Auto-Update a virtual

directory can be created. Once the virtual directory has been created Web services can be

added to the folder for access by clients or other Web services.

2.1.2 Web services

Web services are a model for building applications that can be implemented and

used by any computer system over the Internet. Whereas component-based object models

like Distributed Component Object Model (DCOM), Remote Method Invocation (RMI),

and Internet Inter-ORB Protocol (IIOP) depend on an object model-specific protocol;

Web services extend these models by communicating with Simple Object Access

Protocol (SOAP) and XML [8]. By using SOAP and XML, Web services are to

communicate independent of object model-specific models or what client system is being

used.

Web services perform functions or subroutines that can be simple requests to

complicated business processes [7]. Essentially Web services are applications that expose

a Web-accessible API and serve as interoperable building blocks for constructing

applications. The Web services platform establishes a set of standards that applications

 10

must follow to achieve interoperability over the Web. The services themselves can be

written in whatever language and any platform desired, as long as they can be viewed and

accessed according to the Web services standards; but they would have to accessible

from a Web server such as IIS or Apache. Essentially the Web services standards consist

of three main components: Extensible Markup Language (XML) Schema Definition

(XSD), the type system; Simple Object Access Protocol (SOAP), the invocation

mechanism; and Web Service Description Language (WSDL), the description

mechanism. Figure 2.1 below shows an example of a client invoking a Web service.

Figure 2.2 A client invoking a Web service via SOAP (from [8]).

XML is the format used for representing data through Web services. XML was

chosen since it is platform and vendor independent, and relatively simple to parse. For the

specification of built-in types and a language for defining additional types the XSD is

used. When Web services are created in a specific programming language, the data types

within have to be translated to XSD types to conform to the Web services standards. XSD

can also be used to validate incoming messages within Web service communication to

enforce the agreed-upon messaging contract between services.

When a Web service has been developed a mechanism has to exist for individuals

or programs to invoke the service. SOAP provides this mechanism. SOAP is an

application-level protocol and can interact directly over a transport protocol such as TCP

and is layered over HTTP so that the communication can flow over the current Internet

infrastructure. The layering of SOAP involves a SOAP message sent as part of the HTTP

request or response. SOAP uses XML to achieve platform independence and

interoperability when messages are exchanged between a client and a Web service.

 11

Through the use of HTTP and XML, SOAP enables application-to-application

communications regardless of platform or system infrastructure. XML-based messaging

is the essence of SOAP and includes RPC which enables services to invoke other remote

services via the Web. Through the leveraging of SOAP, client-side and server-side parts

exist that handle serializing and deserializing application data into the appropriate XML

format to send and receive the RPC messages.

The WSDL is an XML-based grammar for describing Web services, their

functions, parameters, and return values [6]. Many development tools such as Visual

Studio.NET can generate a WSDL document describing the developed Web service,

consume a WSDL document, and generate the necessary code to invoke the Web service.

In WSDL, a Web service exposes a group of methods or functions which are referred to

as portTypes or interfaces. In order to invoke a method, a client sends an input message

and gets the output message back. The input message would contain the data being sent

to the service and the output message would contain the data being sent back from the

Web service. Each item in the data of the message is called a message part and the

protocol used to invoke the operation is specified in the binding. The service itself would

be exposed to the world via one or many ports. Each port would represent the network

address where the service is located and the binding required for the port. To summarize

the use of WSDL in a top down hierarchy: 1) a Web service could contain one or more

ports, and each port would reference a binding; 2) a binding references a portType,

operations within the portType, and the messages that make up each individual operation

with the portType; 3) a portType would contain zero or more operations; 4) an operation

would have an input and output message; 5) a message would have zero or more parts

and each part is of some data type; 6) and a part’s type can be an XSD built-in type or

custom defined using XSD [6].

 12

2.1.3 ASP.NET

The UNWSDS is based on Microsoft’s .NET and compact frameworks utilizing

XML Web services in ASP.NET and written in Visual Basic.NET. Figure 2.3 displays

the ASP.NET and ASP architecture.

Figure 2.3 ASP and ASP.NET Architecture

The .NET framework has two main parts – the common language runtime (CLR)

and .NET framework class library [13]. The common language runtime provides the

common services for .NET applications and programs can be written in C, C++, C#, and

Microsoft Visual Basic®, as well as some older languages such as Fortran. The .NET

framework class library includes prepackaged sets of classes. Included within the library

 13

are three main components: ASP.NET for building Web applications and services;

Windows Forms for client user interfaces; and ADO.NET for connecting applications to

databases. Figure 2.4 shows the components of the .NET framework.

Figure 2.4 .NET Architecture (from [14])

ASP.NET enables a developer to use a full featured programming language such

as C# (pronounced C-Sharp) or VB.NET to build web applications easily. All ASP.NET

processes code on the Web server like a normal application and when the ASP.NET code

has been processed, the Web server returns the results in HTML to the client. With the

use of ASP.NET, Object Oriented Programming is available to build scalable and

structured applications for the web. The traditional version of ASP uses HTML and

VBScript to process or render pages, but due to the fact that VBScript is essentially a

scripting language, developers are forced to write code with VBScript intermixed with

HTML which was hard to read in large applications. ASP.NET separates the code from

display in the HTML file as a separate file either in C# or VB.NET. In order to use the

ASP.NET code, references can be added to the HTML pages so that events become

controls and the ASP.NET code would execute the appropriate function or subroutine

 14

based on user interaction. When writing the .NET XML Web services they would be

written to utilize ASP.NET as ASP.NET has XML generation tools that make it fairly

transparent to utilize XML for data storage, configuration, and data manipulation.

 ASP.NET includes a large class library and encapsulates numerous common

functions that can be used with an ASP.NET application. As an example from the project,

data retrieval from a database was used to display the UNWSDS query results. In classic

ASP this would have to be written manually with the development of the subroutines to

handle the data connections and the data table display. In ASP.NET, the object DataGrid

was used to bind result data from the Headhunters. The DataGrid would be rendered as a

table on an aspx page and would display the bound data.

A key ability of ASP.NET is the ability to allow developers to write an

application using multiple programming languages such as C#, VB.NET, or J#. One

ASP.NET page would have to written in a certain programming language, but each page

could hypothetically be written in other languages and all the pages would be able to

work together seamlessly.

2.2 UniFrame

The UniFrame Approach (UA) strives to provide a flexible and effective

framework for developing and implementing distributed computing systems. The

framework provided unifies distributed component models under the Unified Meta-

Component Model (UMM) [3]. Within the UMM exists heterogeneous components,

service and quality of service guarantees, and the infrastructure.

The components within UMM are autonomous and their implementation is non-

uniform in the sense that there is no unified implementation framework, although they

adhere to a distributed-component model. A UMM component consists of a state, an

identity, a behavior, interfaces, private implementation, and three aspects which are

computational, cooperative, and auxiliary. The computational aspect of a component is

indicative of the task(s) completed, and depends on the task(s) objective, techniques

 15

utilized to achieve the task(s) objectives, and specification of the component’s

functionality. The cooperative aspect deals with the interaction between components and

contains expected collaborators (components that can potentially cooperate), pre-

processing collaborators (component is dependent on other components), and post-

processing collaborators (other components are dependent on this component). The

auxiliary aspect handles additional features of a DCS, such as mobility, security, and fault

tolerance.

Within UMM every component must specify the Quality of Service (QoS)

specified for execution. The guarantee of QoS for each component is integral to any

framework dependent on components being able to successfully complete the required

tasks in a constantly changing heterogeneous environment. Within the UA, QoS of a

DCS consists of a parameter catalog subdivided between static or design and dynamic or

run-time parameters, formal specification of the parameters, and mechanism for ensuring

the parameters [4].

The UniFrame Resource Discovery Service (URDS) provides the necessary

infrastructure for UMM’s discovery and communication mechanisms. Figure 2.5 displays

the architecture of the URDS.

Figure 2.5 URDS Architecture (from [4])

 16

The URDS consists of the Internet Component Broker (ICB) which in turn

consists of the Query Manager (QM), Domain Security Manager (DSM), Link Manager

(LM), and Adapter Manager (AM); Headhunters (HH); Meta-Repositories; Active-

Registries; Services; and Adapter Components. The federated hierarchy of the URDS

architecture promotes scalability and fault tolerance. Within the URDS every ICB is

broken down into sub-components in the hierarchy represented by the Headhunters and

each ICB is linked together with unidirectional links. Discovery in URDS is scoped by an

administratively defined domain whereas each domain refers to an industry sector (i.e.

Health Care, Manufacturing, etc.), and each domain is supported by the sector or

organization providing the URDS service.

Finally, the URDS discovery process is based on periodic multicast

announcements, and access control to multicast address resources and data encryption are

utilized for data transmission security. More extensive security features for URDS data

communication are planned for the future.

 2.3 Discovery

Components can be stored and running randomly in a heterogeneous environment

that can consist of embedded devices, laptops, desktops, and servers on a wired or

wireless Local Area Network (LAN)/Wide Area Network (WAN). In order for a client to

use one of these components a protocol has to be utilized in order for discovery.

Discovery can be dynamic or directory based. Directory based methods of discovery

include Universal Description, Discovery, and Integration (UDDI), Web Services

Inspection Language (WSIL), Discovery of Web Services (DISCO), CORBA Trader

Service [4], Lightweight Directory Access Protocol (LDAP) [4], Global Name Service

(GNS) and Domain Name Service (DNS) [4]. Dynamic based methods of discovery

include Service Location Protocol [4], JINI [4], Ninja Project: Secure Service Discovery

Service (SSDS) [4], Salutation [4], Bluetooth [4], Universal Plug and Play (UPnP) [4],

and Simple Service Discovery Protocol (SSDP) [4]. Since the various dynamic based

 17

methods of discovery are covered in great detail in Nanditha Siram’s Thesis [4], and with

the primary focus of UNWSDS being .NET and XML Web services, they are not covered

in the below subsections. UDDI, WSIL, and DISCO apply within the context of the

UNWSDS, as they can be used for .NET and XML Web services, and are described

further.

2.3.1 Universal Description, Discovery, and Integration (UDDI) Service

UDDI is a joint project among industry and business leaders initiated by Ariba,

IBM, and Microsoft to encourage interoperability and adoption of Web services. The

UDDI specifications provide a method to publish and discover Web services through a

Web interface or programmatically from the UDDI Business Registry. The UDDI

Business Registry is a logically centralized, physically distributed service that represents

the core of UDDI and a XML file is used to describe a business entity and its Web

services. A UDDI business registration consists of address, contact, and known

identifiers; categorizations based on standard taxonomies; and technical information

about services provided by the business which include references to specifications for

Web services and URL based discovery mechanisms.

UDDI uses HTTP, XML, and SOAP to provide a uniform service description

format and service discovery protocol. Web services are individually registered using

UDDI discovery services and the information is added to the UDDI business registry

either by a UDDI registration Web site or by using tools that make use of the

programmatic service interfaces provided by the UDDI API. Once a Web service is

registered with the business registry the data is replicated to all the UDDI root nodes, and

soon becomes available to any person who utilizes the UDDI registry to discover the

service.

The core information model used by UDDI is defined in an XML schema and

represents four types of information used: business; service; binding; and specifications

for the services. The UDDI businessEntity element represents Business information and

 18

includes the XML elements for supporting publishing and discovering information about

a business [9]. Figure 2.6 displays the businessEntity structure.

Figure 2.6 businessEntity structure (from [9])

 The structure serves as a top-level information manager for all of the information

about the business unit, and includes support for taxonomies that allow searches for a

service in a particular industry, product category, or geographical region. A business

registration consists of white, yellow, and green page information. The white page

information consists of general information about the business such as business name,

text description, contact information, and any other specified identifiers. The yellow

pages function as a categorization of the business whereas the business is categorized

based on standardized taxonomies (industry codes, product/services). The green pages

specify how to bind to a service provider, and include technical information on how to

invoke a business’s services. For binding information, the bindingTemplate element is

used to specify the necessary information about a published Web service to facilitate the

invocation of that service. A set of references called tModels contain the meta-data about

a specification, including the name, publishing organization, and URL pointer to the

specifications themselves.

 19

UDDI addresses quality of service issues by defining a calling convention

involving cached bindingTemplate information in a retry on failure approach [9]. When a

program is prepared for usage of a Web service, the bindingTemplate data is cached for

use at run-time, then the cached bindingTemplate data is used when calling a remote Web

service. If the call fails, a fresh copy of the bindingTemplate for the Web service is

obtained from the UDDI Web registry and a comparison is made between the old and

new information. If there is a difference, the failed call is retried, and if it is successful

will replace the cached information with the newly obtained information.

Finally, the UDDI security model only allows individuals to publish or change

information within the UDDI business registry [9]. The distributed UDDI business

registry maintains a unique list of authorize parties and tracks which businessEntity or

tModel data was created by a particular individual. A change or deletion is allowed only

if the change request was made by the same individual who created the original

information. All data communication with the UDDI business registry is through a secure

channel.

2.3.2 Web Services Inspection Language (WSIL)

WSIL provides a mechanism for a service requestor to discover and utilize a

XML Web service and was created with the intent to enhance the usability of UDDI [10].

In concept, WSIL is very similar to UDDI with the primary difference being that the Web

service query does not communicate directly with the centralized UDDI registry, but is

sent directly to the service providers from the requestor. WSIL takes the UDDI

centralized service publication model, decentralizes it and distributes the individual

components such that each Web service provider can advertise its own Web services

rather than relying solely on UDDI. Instead of the centralized, un-moderated registry that

UDDI offers, WSIL provides a decentralized, moderated registry distributed over the

Web. UDDI and WSIL can interact in that a service can be registered with the UDDI

registry and WSIL used to discover the service by redirection.

 20

WSIL defines an XML based language which allows publishers to advertise their

services and the elements for the language are defined in a specified schema namespace

[10]. Within a WSIL document exists a root entity called a service, which is the wrapper

for the service advertisements used for discovery. The WSIL specification defines a set of

conventions consisting of fixed name and linked WSIL documents, which allow Web

service requestors to locate WSIL documents. The fixed name WSIL documents are

placed in a common entry point for a Web site (usually the root level) so that are easily

found from an external search mechanism. The linked WSIL documents allow service

providers to organize their Web service listings in a hierarchical manner and a hierarchy

is established by organizing the links within the document. A combination of the fixed

name and linker WSIL documents can be used to provide a well organized hierarchical

layout of Web services provided in a similar format to a Web Site Map.

While WSIL is similar to UDDI it is not intended to be a replacement or

competition, but rather an enhancement and WSIL has build-in support for interoperating

with UDDI [10]. A WSIL document can provide a reference to an entry in a UDDI

business registry in which the reference element has a location attribute (specifies the

location URL of the UDDI registry) and a child element which specifies the UDDI key

for locating the service within the registry. If the Web service has been properly

registered with the UDDI registry, then the WSIL can be used to discover and connect to

the service.

2.3.3 Discovery of Web Services (DISCO)

 DISCO preceded UDDI and is a proprietary technology for publishing and

discovering Web services developed by Microsoft. While DISCO is similar to UDDI in

concept, it is meant more for simple document-based lookups and does not provide the

extensive lookup capacity of UDDI or a Web service repository. DISCO is utilized to

define a document format for a Web service, thus making it possible to be discovered.

DISCO also has a discovery mechanism to find other Web services, determine their

 21

capabilities, and interact with them [11]. To publish a deployed Web service with DISCO

for static discovery, a .disco XML file needs to be created and placed in the root folder of

the Web server. Within the .disco XML file, there are two important elements: the

contractRef, which has two attributes – ref and docRef – used to point to the Web service

WSDL and documentation; and the discoveryRef links DISCO documents to one another.

These two attributes are all that is needed within the .disco file for the Web service.

 Once a DISCO document has been created for a given Web service, there are two

methods of discovery: a command line utility disco.exe which generates an output file

about any Web services discovered for a given URL; and Visual Studio.NET provides a

user interface in which a Web reference can be added and the connection to the Web

service can be used within a VS.NET program. Whereas a .disco file provides a static

discovery mechanism, dynamic discovery is enabled through the use of a .vsdisco file.

When VS.NET is utilized for Web service development and an ASP.NET Web project or

service is created a .vsdisco file is automatically created and placed in the Web server

root folder.

 Although DISCO is simpler to use than UDDI and quicker to develop for, it is

extremely limited in scope and functionality. DISCO does not attempt to sort Web

service information into categories or hierarchies to enable more sophisticated queries,

whereas UDDI can. Since DISCO is proprietary it is limited to Microsoft-OS based

platforms and development is primarily completed using Microsoft development IDEs.

DISCO was the initial attempt to provide a registry and discovery service for Web

services so that developers could become more familiar with the process. The eventual

assumption was that if a more robust registry and discovery mechanism was necessary,

then UDDI was to be used.

 The Discovery services described in this chapter are mostly designed for systems

that have been developed and deployed in a pre-configured or confined manner [4].

When using these systems, the Web services have to be defined and referenced within the

programs that use them. There is not a method for dynamic discovery and these systems

 22

cannot take advantage of heterogeneity and a constantly changing environment like the

UNWSDS. The UNWSDS has been designed to leverage dynamic discovery, where Web

services can be added and used as needed.

Chapter 3 provides the architecture of the UNWSDS. The design details and

implementation will be discussed.

 23

3. ARCHITECTURE

This chapter provides the architecture of the UNWSDS including the design

details and implementation. The architecture of the UNWSDS uses the UniFrame URDS

as the model.

3.1 URDS Architecture Overview

The URDS architecture is organized as a federated hierarchy [4]. Every ICB has

zero or more Headhunters attached to it and the ICBs are in turned linked to one another.

The URDS discovery process locates services within an administratively defined logical

domain, and domains are determined by the organizations providing the service [4].

URDS discovery is based on multicasting and is designed to handle failures through

periodic multicasted announcements and information caching in repositories. A lack of

communication beyond a designated timeframe for the component indicates a failure and

the system state is reset. Table 3.1 provides a brief description of each URDS component.

Figure 3.1 is an illustration of the URDS architecture and its components.

Internet

Component

Broker

(ICB)

The ICB acts as an all-pervasive component broker in an

interconnected environment. It encompasses the communication

infrastructure necessary to identify and locate services, enforce

domain security and handle mediation between heterogeneous

components. The ICB is not a single component, but a collection of

services comprising of the Query Manager (QM), the Domain

Security Manager (DSM), Adapter Manager (AM), and the Link

Manager (LM). These services are reachable at well-known

addresses. It is envisioned that there will be a fixed number of ICBs

deployed at well-known locations hosted by corporations or

organizations supporting this initiative.

Domain

Security

The DSM serves as an authorized third party that handles the secret

key generation and distribution and enforces group memberships

 24

Manager

(DSM)

and access controls to multicast resources through authentication

and use of access control lists (ACL). DSM has an associated

repository (database) of valid users, passwords, multicast address

resources and domains.

Query

Manager

(QM)

The purpose of the QM is to translate a system integrator’s natural

language-like query into a structured query language statement and

dispatch this query to the ‘appropriate’ Headhunters, which return

the 32 list of service provider components matching these search

criteria expressed in the query. ‘Appropriate’ is determined by the

domain of the query. Requests for service components belonging to

a specific domain will be dispatched to Headhunters belonging to

that domain. The QM, in conjunction with the LM, is also

responsible for propagating the queries to other linked ICBs.

Link

Manager

(LM)

The LM serves to establish links with other ICBs for the purpose of

federation and to propagate queries received from the QM to the

linked ICBs. The LM is configured by an ICB administrator with

the location information of LMs of other ICBs with which links are

to be established.

Adapter

Manager

(AM)

The AM serves as a registry/lookup service for clients seeking

adapter components. The adapter components register with the AM

and while doing so they indicate their specialization, i.e., which

component models they can bridge efficiently. Clients contact the

AM to search for adapter components matching their needs.

Headhunter

(HH)

The Headhunters perform the following tasks: a) Service

Discovery: detect the presence of service providers (Exporters), b)

register the functionality of these service providers, and c) return a

list of service providers to the ICB that matches the requirements of

the component assemblers/system integrators requests forwarded by

the QM. The service discovery process performs the search based

on multicasting.

Meta- The Meta-Repository is a data store that serves a Headhunter to

 25

Repository

(MR)

hold the UniFrame specification information of exporters adhering

to different models. The repository is implemented as a standard

relational database.

S1..Sn

Services implemented in different component models (RMI,

CORBA, etc.,) identified by the service type name and the

component’s informal UniFrame specification which is an XML

specification outlining the computational, functional, cooperational

and auxiliary attributes of the component and zero or more QoS

metrics for the component.

AC1..ACn Adapter components, which serve as bridges between components

implemented in diverse models.

C1..Cn Component Assemblers, System Integrators, System Developers

searching for services matching certain functional and non-

functional requirements.

Table 3.1 Description of URDS Components (from [4])

Figure 3.1 URDS architecture (from [4])

 26

3.2 Design Details

The following subsections provide design details and algorithms for each of the

URDS components that were designed, prototyped, and utilized within the UNWSDS

using Visual Basic.NET. The following URDS components were utilized within the

UNWSDS design and prototype: 1) Query Manager (QM), 2) Headhunters (HH), 3)

Meta-Repository (MR), and 4) Active Registry (AR). These URDS components were

chosen to be implemented in the UNWSDS as they can best exemplify the interaction of

.NET XML Web services within UniFrame. Other URDS components were not

developed within this timeframe, but would be added in the future enhancement set.

3.2.1 Query Manager (QM)

The QM is responsible for finding the Web services matching a user’s requests.

The QM parses the user’s request into a structured query language statement and sends

this query to the appropriate Headhunters (determined by the domain). Requests for Web

services are sent to Headhunters and the Headhunters return the list of matching services

to the QM. The QM obtains the list of Headhunters from the Headhunter Web service

which in turn registers new Headhunters as Web services as necessary. Since the

Headhunter Web service is registered with an IIS Web server, permissions can be

configured to prevent or allow access on a domain level to serve the purposes of the

DSM.

Selection of results by the QM is controlled by the user’s parameter values in the

query form. The user would be required to enter: 1) the Web service details such as

domain, name, description, and function; 2) the functional attributes such as algorithms,

complexity, and technology (in this case ASP.NET is the default); 3) search by Auxiliary

attributes such as mobile or not mobile (being embedded device); 4) search by QoS

Metrics such as end-to-end delay and availability. Each entered parameter would be

considered as a constraint to the query. As more parameters are entered, the query is

 27

constrained more, whereas a more global query would have very few parameter values

entered.

The QM queries are handled in the following manner:

• Parse the user’s entered parameters and extract the text pertaining to the

various UniFrame specified attributes necessary for finding the Web services.

• Compose the extracted information into a SQL based query statement.

• Dispatch the SQL-based query to the closest (by network proximity) system’s

Headhunters.

• The Headhunters will query their associated databases and determine whether

components exist that match the user’s parameter values. If there is a match,

the results are returned to the QM, if no match then the query is passed to a

randomly selected active Headhunter. This process continues until the

components are found or all the Headhunters within the domain have been

queried. There is a time out, however, that is mentioned below. Although not

currently implemented, a future enhancement for this process would include

the ability to search Headhunters by network proximity based on the cost of

communication and how quickly a Headhunter can respond to a query.

• The QM will wait for a specified time period for results to be returned from

the Headhunters before timing out. Since the QM is implemented as a Web

service in the UNWSDS, one of the connection options through IIS is

AspSessionTimeout. The AspSessionTimeout call option is the length of

period in seconds during which the Web service session will continue. If the

Web service being queried does not answer, the calling Web service or QM in

this case, will quit calling after this limit is surpassed. The

AspSessionTimeout of 20 seconds was used for the QM. 1200 seconds is the

default set by IIS, which would have dramatically increased the wait time of

the client, so 20 seconds was set arbitrarily for this purposes of this

implementation.

 28

• The QM returns the results, whether there are results or not, to the user of the

system. The results can be directly accessed by their Web service binding

information displayed in the result table.

Data structures used within the QM:

Object queryObject The query object holds all the attributes of

the user’s request which were selected as

parameters for searching. The parameters

include the Web service details such as

domain, name, description, and function;

the functional attributes such as algorithms,

complexity, and technology; search by

Auxiliary attributes such as mobile or not

(mobile being embedded device); search by

QoS Metrics such as end-to-end delay and

availability. The query object also stores

the necessary connection and

authentication routines for communicating

with the Headhunters via QM.

Object dataGridObject Stores and displays the results by Web

service ID and binding information.

Object sp_search_for_components Database implementation of the search

routine. This object actually executes the

query based upon the queryObject’s

parameters. The primary purpose of this

object is to increase the response time of

the QM.

Table 3.2 Data structures used for QM functions

 29

The QM and, subsequently, its sub-services are activated once it is configured as

an IIS Web service application. As a Web service application, the QM stands ready to

service incoming requests so no further initialization is required. IIS was utilized for

restricting use of the QM within a local subnet by IP addresses. Only Web services or

clients from the local subnet would be able to access the QM. To increase QM security,

Web services or clients invoking the QM were not allowed anonymous access to IIS, but

were authenticated securely by using specific pre-configured Web service accounts

though Kerberos. The QM activation algorithm is displayed below. It is assumed that an

IIS Web server has been pre-configured and is executing, and the QM Web service has

been compiled.

QM_WEBSERVICE_ACTIVATION

CREATE IIS_virtual_directory

SAVE QM_Web_service within IIS_virtual_directory

CONFIGURE IIS_virtual_directory as an application within

the IIS MMC.

END QM_WEBSERVICE_ACTIVATION

Once the QM Web service has been activated it can process incoming requests.

When a request has been received by the QM Web service it will parse the user’s entered

parameters and extract the text pertaining to the various UniFrame specified attributes

necessary for finding the Web services. The UniFrame attributes used included Web

service domain, name, description, function names, algorithms, complexity, mobility,

end-to-end delay and availability. Next a SQL query will be generated based on the

extracted information, and then the query will be sent to the closest (by network

proximity) system’s Headhunter Web services. The Headhunters will query their

associated databases and determine whether components exist that match the user’s

parameters. If there is a match, the results are returned to the QM, if no match then the

query is passed to to the next Headhunters. The Headhunters are chosen randomly for this

implementation and this process continues until the components are found or all the

Headhunters within the domain have been queried. The QM will wait for 20 seconds,

which was set arbitrarily for this implementation, for results to be returned from the

 30

Headhunters before timing out. The QM returns whatever results it receives to the user of

the system. Once the results are displayed they can be directly accessed by their Web

service binding information displayed in the result table.

The QM Client Query Handling algorithm outlines the process for servicing queries from

clients. Client parameters are processed into a SQL query and then propagated to

Headhunters. The results of the queries are returned to the client and each client is

handled as a separate Web service session. The timeout period is pre-configured by the

IIS administrator of the server running the QM, as 20 seconds. The following algorithm

was adapted from Nanditha Siram’s Thesis [4].

QM_CLIENT_QUERY_HANDLING

 INPUT: User_entered_parameters

 OUTPUT: result_DataGrid

/* The Headhunters will query their associated databases

and determine whether components exist that match the

user’s parameters. */

 WHILE incoming_request = TRUE

 Parse user_entered_parameters and generate SQL

 Create a new SQL query entity

 n = 0, timeout_count = 0

/* If there is a match the results are returned to the

QM, if no match then the query is passed to next

nearest (by network proximity) system’s Headhunters.

This process continues until the components are found

or all the Headhunters within the domain have been

queried. The QM will wait for specified time period

for results to be returned from the Headhunters before

timing out */

 WHILE request_results_found = FALSE

 OR timeout = TRUE

Send SQL query entity to

HeadHunter[n]_Web_service

 HeadHunter_Web_service[n] query meta-data

 31

/* No results, will have to query next nearest

HeadHunter */

 IF HeadHunter_Web_service[n] results = 0

 request_results_found = FALSE

 timeout_count++

 // Results found

 ELSE

 request_results_found = TRUE

 END IF

 // Bind results to DataGrid for output

 Add results to result_DataGrid

 n++

 END WHILE

 /* Web service form will output the results in

the DataGrid */

 Send response to client with result_DataGrid

 END WHILE

END QM_CLIENT_QUERY_HANDLING

User parameter values are entered through the main UniFrame query form and

then the text is extracted for generating the appropriate SQL query. Once the SQL query

is ready for processing it is passed to the Headhunters for searching. Since database

stored procedures are much more efficient to utilize than generating SQL queries ad hoc,

the Headhunter queries are pre-defined with the expected SQL parameters. If there are

results these are bound to the DataGrid object. This algorithm was adapted from Nanditha

Siram’s Thesis [4], with the revisions being specific to Web service communication. This

process is summarized below.

QM_PROCESS_USER_PARAMETERS

INPUT: domain, componentName, componentDescription,

 functionNames,algorithms, complexity,

 technology, availabilityValue,

 end2endDelayValue, mobility as string

 32

OUTPUT: result_DataGrid

/* All input is bound to parameters that are used by the

database stored procedure */

Bind input parameter values to stored procedure parameters

/* The database stored procedure is invoked to find the

requested Web services */

INVOKE dbo.sp_search_for_components

/* Results would be bound to DataGrid object for

output */

BIND result_DataGrid

END QM_PROCESS_USER_PARAMETERS

The DataGrid object allows for user or client sorting of the retrieved Web

services. Essentially these are implemented as links within the DataGrid object itself.

Clicking on the appropriate column header link would sort by that parameter. The

advantage of binding the resulting information from the Headhunters with the DataGrid is

another query is not necessary to sort the data. The sorting routine is embedded within the

DataGrid itself. This actual process of sorting is summarized below.

QM_SORT_RESULTS_DATAGRID

INPUT: DataGrid_sort_by_parameter

OUTPUT: DataGrid_sort_results

IF on_click DataGrid_heading_link = TRUE

DataGrid_sort_by_parameter = on_click

DataGrid_heading_link

DataGrid_sort_results = descending_sort_by

DataGrid_heading_link

RETURN DataGrid_sort_results

END IF

END QM_SORT_RESULTS_DATAGRID

3.2.2 Headhunters (HH)

 33

The Headhunters within the UNWSDS are used for Web service discovery and

passing the list of Web services and providers to the ICB based on the client entered

parameters.

The Headhunters will query their associated databases and determine whether

components exist that match the user’s parameters. When a query is passed to the first

Headhunter, the Headhunter queries its repository. If no results are found, the query is

passed to the next randomly selected active Headhunter, and the process continues until

results are found or the query times out. For this implementation the Headhunter selection

process is random, but a future enhancement would include selection based on network

proximity or time associated with communication. For the UNWSDS each result table for

each Headhunter was displayed as a DataGrid so one could see how the query process

was working.

Once the Headhunter services are loaded within the UNWSDS they stay active

awaiting queries. On a periodic basis they refresh their meta-data repositories. This

refresh time period is determined within the Web service itself and can be reconfigured

by the administrator of the UNWSDS for the localized domain, such as a company or

educational institution. For the purposes of this project, the refresh time was set

arbitrarily at ten minutes. Too low a time set for refresh, such as 1 minute, would have a

detrimental effect on the performance of the UNWSDS, whereas too high of a time

would reduce the Headhunter’s abilities to maintain a current list of accessible Web

services. IIS virtual directory hierarchy was established so that the Headhunters could

efficiently look for the available Web services. Any module or .asmx file (these are

considered .NET web services) in the Web Services virtual directory on IIS used within

the UNWSDS were assumed to be available services by the Headhunters. Web service

enabling in .NET done once a Web service has been added to a virtual directory for

Internet access it is assumed to be active. Web services can be “deactivated” by removing

the Internet access to them via IIS. Essentially a Web service in .NET is “not active” for

location by the Headhunters when the Headhunters cannot find them at the prescribed

 34

virtual directory location either due to security access removal or removal of the service

itself. The Headhunters can be programmed to locate Web services individually or can

have the same Web services in their meta-data tables based on how the Headhunter Web

service is configured.

Another nice feature of using .NET can be leveraged by using the Microsoft SQL

2000 servers for the Headhunter meta-data repositories. If necessary, each meta-data

repository can be configured for merge replication amongst the individual servers. The

database merge replication would have to be configured by the UNWSDS administrators

within a localized domain, such as a company or educational facility. The UNWSDS

aministrators within a localize domain would be the logical choice for the configuration

of replication since they will need to configure the meta-data repositories for the

Headhunters. Adding the merge replication would involve a relatively minor change to

the default database schemas. These SQL servers can be located on desktops, laptops, and

embedded devices and can be connected via wired and wireless connections. What is

advantageous about the merge replication is it can be configured for immediate data

synching when the database is mostly online or periodical data synching when the

database can be offline for extended periods like in the case of embedded devices. The

advantage of this replication is the synching of current active Web service data being

known to multiple Headhunters without the need to do this programmatically. The

disadvantage is one would be tied to the proprietary Microsoft SQL 2000 server product

to accomplish this goal. Unfortunately, this is in conflict with the goals of interoperability

in the UniFrame Approach, and for the purposes of the UNWSDS replication was not

explored with the Headhunters. However, for the sake of exploration, the Bank and

Manufacturing databases used by the Financial and Manufacturing domain Web services

did use merge replication.

Data structures used within the Headhunters:

Object componentTable Mapping of the Web services directories
and binding information necessary for
clients to consume services. This object

 35

also stores the detailed UniFrame
Specification information necessary for
client queries.

Table 3.3 Data structures used for Headhunters

As the Headhunters are considered sub-services of the QM in the UNWSDS, they

are activated once the QM is configured as an IIS Web service application. Since the

Headhunters are Web service applications like the QM, they stand ready to service

incoming requests and no further initialization is required. The Headhunters activation

algorithm is displayed below. It is assumed that IIS has been pre-configured and

executing, and the Headhunter Web services have been compiled.

HEADHUNTER_WEBSERVICES_ACTIVATION

INSTALL HeadHunter_Web_services within QM_virtual_directory

VERIFY QM_virtual_directory configured as application within

MMC

END HEADHUNTER_WEBSERVICES_ACTIVATION

As mentioned earlier, IIS virtual directory hierarchy was established so that the

Headhunters could efficiently look for the available Web services. Web services in the

Web Services virtual directory on IIS used within the UNWSDS were assumed to be

available services by the Headhunters. This process is summarized below.

POPULATE_HEADHUNTER_DATA_TABLES

 INPUT: directory_location

/* Get the handle to the directory_location for the

‘active’ Web services */

web_service_location = directory_location

/* Obtain the component data stored in this Web service

directory */

FOR EACH web_service IN web_service_location

 web_service_binding = LOOKUP web_service

 36

/* Separate Web service binding parameters from the

Web service binding information */

web_service_binding_parameters =

LOOKUP web_service_binding

/* Obtain the Web service data stored in the binding

parameters */

 componentTable = web_service_binding_parameters

/* Store the Web service data from the componentTable

into the HeadHunter meta-repository */

 IF componentTable has elements

component_information =

LOOKUP componentTable_elements

INSERT component_information IN

HH_meta_repository

 END IF

 NEXT // End For

END POPULATE_HEADHUNTER_DATA_TABLES

A SQL stored procedure is used by the Headhunters to query their respective

meta-data repositories or databases. A SQL stored procedure is a piece of code written

for and stored on a database server that performs one or more operations. The code within

a stored procedure can be a batch or statement that can be called from applications or

Web services and can pass results back to the calling application. The use of a stored

procedure is more efficient and has a quicker response time than an ad hoc query. For the

Headhunter to be able to connect and use it, the stored procedure, will reside as callable

code within the Headhunter’s meta-data repository. The stored procedure process is

displayed as SQL below.

Dbo.sp_search_for_components

@domain as varchar(30),

@componentName as varchar(100),

@componentDescription varchar(1000),

@functionNames varchar(500),

 37

@algorithms varchar(200),

@complexity varchar(30),

@technology varchar(30),

@availabilityValue varchar(30),

@end2endDelayValue varchar(30),

@mobility varchar(5)

select ‘’+ID+’’

“BINDING”,NAME,DESCRIPTION,PID,’<a href=”’+CLIENT+’”

target=”new”>’+CLIENT+’’ “PROXY”, END2ENDDELAY,

AVAILABILITY, MOBILITY from COMPONENT

 where DOMAIN LIKE @domain AND

 NAME LIKE @componentName AND

 DESCRIPTION LIKE @componentDescription AND

 THE_FUNCTION LIKE @functionNames AND

 ALGORITHM LIKE @algorithms AND

 COMPLEXITY LIKE @complexity AND

 TECHNOLOGY LIKE @technology AND

 AVAILABILITY LIKE @availabilityValue AND

 END2ENDDELAY LIKE @end2endDelayValue AND

 MOBILITY LIKE @mobility AND

 ACTIVE = ‘Y’

As mentioned previously, the Headhunters will refresh their meta-data tables

every ten minutes to verify previous existing Web services are still active and

consumable. If Web services have been removed from their Web service directory, then

the Headhunters will remove them from their data tables. This refresh is similar to the

process for populating Headhunter data tables, except refresh focuses on Web services

that have been removed or could not be located and those that have been newly added.

Whereas populating Headhunter data tables involves adding all the locatable Web

services to the meta-data repositories, the refresh selectively removes those that cannot be

located and adds those that have been newly added. This process is shown below in more

detail.

REFRESH_HEADHUNTER_DATA

 INPUT: directory_location

 38

/* Get the handle to the directory_location for the

‘active’ Web services */

web_service_location = directory_location

/* Obtain the component data stored in this Web service

directory */

FOR EACH web_service in web_service_location

 IF web_service_exists_in_HH_data_table = FALSE

 web_service_binding = LOOKUP web_service

/* Separate Web service binding parameters from

the Web service binding information */

 web_service_binding_parameters =

LOOKUP web_service_binding

/* Obtain the Web service data stored in the

binding parameters */

 componentTable = web_service_binding_parameters

/* Store the Web service data from the

componentTable into the HeadHunter meta-

repository */

 IF componentTable_has_elements = TRUE

 component_information =

LOOKUP componentTable_elements

INSERT component_information INTO

HH_meta_repository

 END IF

 ELSE IF web_service_exists_in_HH_data_table = TRUE AND

 LOOKUP web_service = FALSE

DELETE component_information FROM

HH_meta_repository WHERE

web_service_binding_parameters = web_service

 END IF

 NEXT // End For

If there are too many Headhunters within the UNWSDS, there could be

degradation of performance to the overall system. Further analysis of this effect is found

 39

in the chapter 4 experiments done with the UNWSDS prototype. The administrator of the

UNWSDS for a localized domain would have the authority to remove Headhunters when

necessary, such as for performance or testing purposes. The Headhunter, since it is

implemented as a Web service, is removed from the system by being removed from its

IIS application virtual directory. Web services can be removed from access in other ways

(removing security being one), but this is by far the cleanest way of ensuring an

application exception error does not occur on the client side. The process for removing a

Headhunter Web service is displayed below. This process is a Web service specific

adaptation from the Headhunter removal algorithm outlined in Nanditha Siram’s Thesis

[4].

REMOVE_HEADHUNTER

 // Close active processes

 IF open_communication = EXISTS

DEACTIVATE Headhunter_open_communication in IIS

 END IF

// Remove Headhunter Web service from its virtual directory

REMOVE Headhunter

END REMOVE_HEADHUNTER

3.2.3 Meta-Repository (MR)

The Meta-Repository is a data store or database that holds service information of

components adhering to different models [4]. The Meta-repositories within the UNWSDS

are implemented as SQL 2000 database instances that are configured on multiple

systems. Within the SQL 2000 database instances, there is UniFrame schema. The

UniFrame schema serves to control access permissions, and the data store for the meta-

repository information within the schema is the Component table. The MR organization

is described in more detail within section 3.3.2.4.2. These databases, in turn, house the

data tables and stored procedures used by the Headhunter for Web service information

storage and retrieval. Within the Web service data table the service type name, binding

 40

information, specification details, and QoS values are stored. As mentioned earlier, the

SQL 2000 databases could be configured for merge replication to maintain the

Headhunter data across each individual data table, but this would create a reliance on the

Microsoft developed proprietary system and would go against the basic principles of the

UniFrame Approach.

3.2.4 Active Registry (AR)

The active registry in the UNWSDS is the Microsoft Internet Information Server

or IIS itself. IIS allows the creation of virtual directories and the ability to enable them as

applications. A virtual directory in IIS is a system that allows administrators to put Web

services into private directories on the Internet, and based on the established permissions,

allow other Web services to connect to and communicate with the services placed into the

virtual directory. The use of virtual directories is highly useful as it is relatively easy and

quick to publish a Web service for external Internet access. By completing this process

you are in effect “registering” the Web services with the IIS server and greatly simplifies

the process of Active Registration. The virtual directory becomes the Web service(s)

location and is recognizable by IIS once it is configured as an application, so a separate

AR is not absolutely necessary.

3.3 Implementation

This section describes the UNWSDS prototype implementation and contains a

description of the technology used and the prototype implementation itself.

3.3.1 Technology Used

This section describes the various systems used to implement the .NET prototype

and how they interacted within the .NET URDS architecture.

 41

Internet Information Services is a Windows-OS component that enables system

administrators or system owners to configure their systems as Web servers. A Web server

serves web pages to clients across the Internet or an Intranet. The Web server hosts the

pages, scripts, services, applications, and multimedia files, and serves to clients using

HTTP. A Web server is locatable by its IP address via HTTP, and in most cases the IP

address is DNSed to facilitate easier location by a URL instead of the IP octet. In addition

to IIS another very commonly used Web server is Apache. IIS 5.1 is used as the Web

server for the UNWSDS.

A database server is software or service that manages a database or multiple

instances of databases. A database server includes a Database Management System

(DBMS) which is responsible for maintaining and managing the data in the database, the

access privileges, transaction synchronization, and backup. The DBMS enables clients to

manipulate and extract data from the data tables within the database. If a client needs to

obtain information from the database, a request or query written is a “Structured Query

Language” would be made to the database through the DMBS. Assuming the client has

the proper access permissions in place, the subsequent results, if any, would be displayed.

Data manipulation would be completed using a very similar method.

Typically, database servers can cope with many clients connecting at once

without any problems. In the case of multiple clients wanting to update the database at

once, the DBMS would synchronize the transactions without corrupting the data within

the database. A database server usually contains one or more databases, in which the data

is stored in an actual file accessible by the DBMS. Within the database there are one or

more tables and many other objects (Triggers, Stored Procedures, Views) that would

facilitate data manipulation. Within a table are one or more records also known as rows.

Tables can be related to each other by primary (parent) and foreign (child) relationships.

Microsoft’s SQL Server 2000 and CE 2000 are used within the UNWSDS for the

prototype. SQL Server 2000 is the Windows-OS based software usable on desktops,

servers, and laptops, while SQL Server CE 2000 is used on embedded devices.

 42

An application server is a software package that serves as an intermediary

between a web server and a back-end system, such as a database or legacy/mainframe

application [12]. A Web client request is received by the Web server, which sends the

request to the application server. The application server parses the request and

communicates with the back-end systems to return the appropriate HTML response to the

Web server for sending back to the requesting client. Some other examples of application

servers are ASP.NET, Allaire Cold Fusion, PHP, and J2EE™. For the purposes of the

UNWSDS, the application server used is ASP.NET.

3.3.2 Prototype Implementation

This section describes the implementation of the UNWSDS architecture. Figure

3.4 illustrates the implementation. The UNWSDS prototype is implemented on multiple

systems; for the sake of experimentation, desktops, laptops, and embedded devices were

used. The main issue in implementation of the UNWSDS occurred between the

embedded devices and workstations. As embedded devices have much less storage

capacity and memory available for application execution than workstations, these

constraints served as a performance bottleneck for the implementation. Also due to the

lack of system resources available to an embedded device, large complex applications

would not be functionable. The largest hurdle for embedded UNWSDS was the lack of a

mature IIS application to host the Web services required for full prototype

functionability. Unfortunately, there is not an ASP.NET supported IIS version for

embedded devices currently. In order to simulate Web services on the embedded device

for the prototype, they had be manually added to the embedded device by synching the

Web service WSDL files between a workstation connected to the embedded device. The

WSDL files could be found by the UNWSDS Headhunters through the same IIS methods

available to a workstation, except they could not be dynamically invoked. A future

enhancement to the UNWSDS would be to remedy this issue as soon as a more

functionable IIS, that takes advantage of ASP.NET, is available to embedded devices. To

keep in line with the goals of the UniFrame Approach the UNWSDS is a distributed,

multi-tier architecture.

 43

Workstation

Computer

Laptop

PDA

IIS Web server

Client Tier

Web Server

index.htm

UniFrameQuery.htm

ComponentList.aspx

HTTP

Application Server Tier

Computer with IIS

Laptop with IIS

AR
integrated

with IIS

QMService.asmx

HeadhunterService.asmx

HeadhunterService.asmx

UseWebServiceClient.aspx

HH
DBHH

DBHH
DB

HeadhunterService.asmx

AR
integrated

with IIS

HH
DBHH

DBHH
DB

DSM
integrated

with IIS

Database
Server Tier

ADO.NET

ADO.NET

Figure 3.2 UNWSDS Implementation

In the UNWSDS, the client tier is configured to support a variety of client types

through a web-based interface. The application server tier supports client services

through the Web Server and also supports the various UNWSDS components (QM, HH,

AR) as .NET XML Web services. The database server tier supports access to the HH

database repositories by means of standard ADO.NET.

3.3.2.1 Environment

Microsoft .NET is used to implement the various services of the UNWSDS

prototype. The .NET XML Web services (QM, HH, AR, domain service applications,

etc.) are implemented using Visual Basic.NET within ASP.NET as asmx files. The data

repositories (HH Meta-data, domain service applications) are implemented as databases

on Microsoft SQL Server 2000, wherein Publisher and Subscriber Replication has been

 44

enabled for the domain service applications. Scripted application web pages that service

client queries are implemented in ASP.NET as aspx files.

3.3.2.2 Communication

Communication between the core components is achieved through the SOAP

protocol between the various .NET Web services. The connections to the SQL 2000

databases are established using ADO.NET. Interactions between the clients and the other

non-Web service components are based on the HTTP protocol.

3.3.2.3 Security

The security infrastructure in the UNWSDS is maintained through IIS user

authentication either on the local system or domain level and can be enhanced by SSL

communication. IIS user authentication is done through NTLM or Windows Integrated

Authentication where the user’s authentication parameters are verified with the local

system or domain level group access tables. This, in turn, determines the access level and

execution level of the services being accessed. In addition to this level of security IP

filtering can be utilized to limit access to certain subnets or IP addresses.

The Secure Sockets Layer or SSL provide clients to server encryption for all data

passed between the web server and client. In order to use SSL, a secure certificate would

have to be purchased from a provider such as www.verisign.com. First, a certificate

request must be generated, and Verisign will issue a certificate for installation and

configuration. Once the certificate is installed, secure communication is established using

https:// instead of http:// in the site URLs. All service communication from this point

between server and client would be encrypted.

3.3.2.4 Programming

 45

As mentioned earlier, .NET XML Web services were used in the implementation

of the prototype, and to provide URDS functionality. Each service or database object

represents specific behaviors, manipulation of data, or data storage in the application.

3.3.2.4.1 Service Objects

Individual service objects are used to represent the individual results of a database

query or to exemplify a service in terms of an object. These service objects communicate

with each other and external clients through SOAP and/or HTTP. The prototype contains

the following service objects: ComponentControl, ComponentList, Components, Global,

Headhunter, UniFrameIndex, UniFrameQuery for the UNWSDS. The prototype also

contains the following service objects: BankDataSvc, InventoryDataSvc,

GetCustomerAccountsClient, GetInventoryAccountsClient, MyProxyClass for the

individual Web services that are used as Domain services by the Headhunters. The

UNWSDS class diagrams are displayed in Figure 3.3 and the Domain service class

diagrams are displayed in Figure 3.4.

+FindWebServices()
+FindWebServicesResponse()

-myConnection : SQLConnection
-myCommand : SQLCommand
-strWebServicesDirectory : String
-strWebServicesURL : String
-strFiles : String
-strFile : String
-dirStoreFile : Directory
-strFilename : String
-strComponent : String
-strDescription : String
-strThe_Function : String
-strAlgorithm : String
-strComplexity : String
-strDomain : String
-strCollaborators : String
-strEnd2EndDelay : String
-strAvailability : String
-strMobility : String
-strClient : String

HeadHunter.asmx

+BindData()
+DataGrid_Edit()
+DataGrid_Cancel()
+DataGrid_Update()
+Page_Load()

-myDataSet : DataSet
-mySqlDataAdapter : SQLDataAdapter
-myConnection : SQLConnection
-myCommand : SQLCommand
-txtActive : TextBox
-strUpdateStatement : String
-ComponentInfo : DataGrid

ComponentList.aspx

+New()
+Application_Start()
+Application_End()
+Application_Error()
+Application_BeginRequest()
+Application_AuthenticateRequest()
+Session_Start()
+Session_End()

Global.asax

+New()
+ReadOnly()
+Clone()
+ShouldSerializeTables()
+ShouldSerializeRelations()
+GetSchemaSerializable()
+InitClass()

-Components : DataSet
-strSchema

Components.vb

+Page_Load()
-myFindWebServices : HeadHunter.asmx

UniFrameIndex.aspx

+queryFilterForm() : ComponentList.aspx
+Page_Load()

-componentName : TextBox
-componentDescription : TextBox
-functionNames : TextBox
-algorithms : TextBox
-complexity : TextBox
-qosMetric : TextBox
-end2endDelayValue : TextBox
-availabilityValue : TextBox
-mobility : TextBox
-technology : TextBox

UniFrameQuery.htm

+BindData()
+DataGrid_Edit()
+DataGrid_Cancel()
+DataGrid_Update()
+Page_Load()

-myDataSet : DataSet
-mySqlDataAdapter : SQLDataAdapter
-myConnection : SQLConnection
-myCommand : SQLCommand
-txtActive : TextBox
-strUpdateStatement : String
-ComponentInfo : DataGrid

ComponentControl.aspx

0..*
1..*

1..1

1..1

1..1

1..1

0..*

0..*

0..*

1..*

1..1
1..1

Figure 3.3 Class Diagrams for the UNWSDS Services

 46

The following is an explanation of the above UNWSDS services.

• HeadHunter.asmx – this service represents the UniFrame UNWSDS Headhunter.

The web service refreshes the Headhunter meta-data tables based on the following

algorithm: 1) each Headhunter looks for active web service components; 2) each

Headhunter finds active services and adds the service information, including

binding, to its meta-data tables; 3) periodically the Headhunters would complete a

meta-data refresh, using the first 2 steps again.

• Components.vb – this component is used to serialize XML data readable through

SOAP for communication between the UniFrame services.

• UniFrameQuery.htm – this web page takes user input from the form and passes it

to ComponentList.aspx for component searching via Headhunters.

• UniFrameIndex.aspx – this web form is the main point of entry for the prototype.

It initializes the UniFrame UNWSDS and provides the portal for user interaction.

• Global.asax – this component contains the methods for responding to application-

level events raised by the HttpModules in the UNWSDS services.

• ComponentList.aspx – this web form takes user input from UniFrameQuery form,

processes it, and passes to Headhunters for searching. Results are displayed via

DataGrid. Within the DataGrid, the user can select to consume the service directly

through the service’s client interface, or view the WSDL definition of the Web

service.

• ComponentControl.aspx – this web form provides an administrative interface for

the UniFrame UNWSDS for testing purposes. When invoked, it will display all

 47

known currently accessible Domain Web services in the UNWSDS. Once the list

is displayed, the administrator can enable or disable the Web service to the

Headhunters that would be searching for the service.

+GetAccounts()
+UpdateCustomerAccounts()

-myConnection : SQLConnection
-strSelectStmt : String
-selectCustomerInfos : SQLCommand
-DS : DataSet

BankDataSvc.asmx

+BindData()
+DataGrid_Edit()
+DataGrid_Cancel()
+DataGrid_Update()
+Page_Load()

-myDataSet : DataSet
-mySqlDataAdapter : SQLDataAdapter
-myConnection : SQLConnection
-myCommand : SQLCommand
-txtActive : TextBox
-strUpdateStatement : String
-InventoryItems : DataGrid

GetCustomerAccountsClient.aspx

+GetInventory()
+UpdateInventoryAccounts()

-myConnection : SQLConnection
-strSelectStmt : String
-selectInventoryInfos : SQLCommand
-DS : DataSet

InventoryDataSvc.asmx

+BindData()
+DataGrid_Edit()
+DataGrid_Cancel()
+DataGrid_Update()
+Page_Load()

-myDataSet : DataSet
-mySqlDataAdapter : SQLDataAdapter
-myConnection : SQLConnection
-myCommand : SQLCommand
-txtActive : TextBox
-strUpdateStatement : String
-AccountItems : DataGrid

GetInventoryAccountsClient.aspx

+GetCustomerAccounts()
+GetInventory()
+UpdateCustomerAccounts()
+UpdateInventoryAccounts()
+New()

-results : Object
myProxyClass.vb

1..1

1..1

1..1

1..1

1..1

1..1

1..1

1..1

1..1

1..1

1..1

1..1

Figure 3.4 Class Diagrams for the Domain Services

The following is an explanation of the above Domain services.

• BankDataSvc.asmx – the Bank Data Web Service. Will query for bank account

information and allow updates based on user input.

• InventoryDataSvc.asmx – the Inventory Data Web Service. Will query for

inventory account information and allow updates based on user input.

 48

• GetCustomerAccountsClient.aspx – this web page consumes the GetAccounts

detail function in the BankDataSvc web service using the web service proxy

myProxyClass.vb. Results are displayed and editable through the DataGrid.

• GetInventoryAccountsClient.aspx – this web page consumes the GetInventory

detail function in the InventoryDataSvc web service using the web service proxy

myProxyClass.vb. Results are displayed and editable through the DataGrid.

• myProxyClass.vb – this component is the proxy for the

GetInventoryAccountsClient.aspx and the GetCustomerAccountsClient.aspx to

directly access the InventoryDataSvc.asmx and BankDataSvc.asmx services

respectively.

3.3.2.4.2 Database Objects

The database objects used in the prototype serve as data storage for the various

UNWSDS and Domain level Web services. Database access is through user

authentication within the Security component in MS SQL 2000 Server. Database merge

replication has been enabled for the Manufacturing and Inventory schemas. The database

objects class diagrams are displayed below in Figure 3.5.

Figure 3.5 Class Diagrams for Database Objects

UniFrame Manufacturing

Bank

 49

There are three main schemas – UniFrame, Manufacturing, and Bank, but the

UniFrame schema is maintained on separate MS SQL 2000 servers than the

Manufacturing and Inventory schemas. As mentioned above, all the schemas access

permissions are controlled through the Security component in MS SQL 2000 so separate

tables were not necessary to maintain the security permissions within the UniFrame

UNWSDS.

The UniFrame schema consists of the COMPONENT table. The COMPONENT

table serves as storage for the Headhunter meta-data and consists of the component

information necessary for UNWSDS querying and client binding.

The Manufacturing schema consists of the INVENTORY table. The

INVENTORY table serves as storage for inventory data useful to the Manufacturing

domain. This schema is used for testing the prototype.

The Finance schema consists of the CUSTOMER_ACCOUNTS and

CUSTOMER_INFORMATION tables. CUSTOMER_ACCOUNTS and

CUSTOMER_INFORMATION tables serve as storage for bank data useful to the

Financial domain. This schema is used for testing the prototype.

3.3.2.4.3 User interface

The user interface determines the presentation of the prototype to the client or

user. For the presentation, the ASP.NET pages are used for dynamic generation of query

responses and the HTML pages are used for static content.

The following are the ASP.NET and HTML pages which represent the user

interface of the prototype in the order the user would see them: UniFrameIndex.aspx

(Figure 3.6), UniFrameQuery.htm (Figure 3.7), ComponentList.aspx (Figure 3.8),

GetCustomerAccountsClient.aspx (Figure 3.9), GetInventoryAccountsClient.aspx (Figure

 50

3.10), BankDataSvc.asmx (Figure 3.11), InventoryDataSvc.asmx (Figure 3.12),

ComponentControl.aspx (Figure 3.13). ComponentControl.aspx would only be used by

the administrator of the prototype to be used for execution examples.

Figure 3.6 UniFrameIndex.aspx

Figure 3.7 UniFrameQuery.htm

In Figure 3.6, the UniFrameIndex.aspx page is the entry page for a user. Any

accessible functions are displayed on this page. In the background, access to this page

 51

initiates the UniFrame UNWSDS. In Figure 3.7, the UniFrameQuery.htm provides the

interface to the user to select the criteria to search for active Web services.

Figure 3.8 ComponentList.aspx

Figure 3.9 GetCustomerAccountsClient.aspx

In Figure 3.8, the ComponentList.aspx page displays the results of the Web

service search criteria entered by the user. In Figure 3.9, the

GetCustomerAccountsClient.aspx provides the client interface to the BankDataSvc Web

 52

service for data manipulation and viewing. In Figure 3.10, the

GetInventoryAccountsClient.aspx provides the client interface to the InventoryDataSvc

Web service.

Figure 3.10 GetInventoryAccountsClient.aspx

In Figure 3.11 and 3.12, the BankDataService and InventoryDataService

namespaces are displayed respectively. These are the direct points of access to the Web

services and the WSDL for these Web services can be accessed and viewed.

Figure 3.11 BankDataSvc.asmx

Figure 3.12 InventoryDataSvc.asmx

 53

Figure 3.13 ComponentControl.aspx

In Figure 3.13, the ComponentControl.aspx page displays all the active Web

services in the UNWSDS prototype. Once displayed, the administrator of the system can

enable or disable the Web service to the Headhunters.

This chapter presented the implementation of the UNWSDS prototype, which

serves as an extension of the URDS architecture. Since the original URDS was written in

Java [4] and utilized Java RMI for its communication between components, it was not

functional in .NET. Although Java can be utilized within .NET, the API is limited and

RMI is not an offered capability. The UNWSDS serves as an extension of the URDS

capabilities to the Microsoft .NET platform and the creation of the UNWSDS bridges the

gap between Java and .NET for the UniFrame Approach.

The next chapter presents empirical experimentation that was conducted in order

to validate the performance of the UNWSDS prototype.

 54

4. VALIDATION

In order to validate the performance of the prototype, empirical experimentation

was performed. Due to the limited number of Windows-OS systems available for

experimentation, fewer Headhunters and clients were used than would be optimal for

these experiments. Future work would include the use of more systems and Headhunters

in order to evaluate the scalability of the UNWSDS.

The testing was conducted with the following: three separate clients accessing the

UNWSDS via HTTP: twenty-five Headhunters – fifteen on a laptop, ten on a desktop;

three IIS servers on a laptop, desktop, and embedded device in which two provided the

Active Registries; fifteen total Web services available for lookup – five on a laptop, five

on a desktop, and five mobile services on an embedded device; and three database servers

configured as the Headhunters’ meta-repositories. The experimental tests were conducted

with different UniFrame search queries.

4.1 Experimentations

The below measurements were obtained being averaged over 30 requests and

were conducted on PCs running Windows XP Professional and Windows 2000. The

Microsoft Framework 1.1 was installed on all systems since it was used to execute some

components of the UNWSDS.

The performance metric gathered during the experimentation was Average

Response Time (ART), and is defined as the time taken by the UNWSDS to receive a

client request, parse the request parameters, locate the appropriate services, and display

the results.

 55

Average Response Time was determined for the following three cases:

• Number of incoming queries vs. Average Response Time with all HHs activated

• Number of Web services vs. Average Response Time

• Number of HHs vs. Average Response Time

The above experiments were meant to analyze the performance of the UNWSDS

under some select conditions. Due to the lack of available systems extensive scalability

and fault tolerance tests were not completed. With the addition of more Windows OS

systems to the UNWSDS, future experimentation would include fault tolerance and

scalability.

4.2 Results

The results from the experiments are shown below as graphs. Each of the graphs

is as follows in the order they appear below: Number of incoming queries vs. Average

Response Time with all HHs; Number of Web services vs. Average Response Time; and

Number of HHs vs. Average Response Time.

For Figure 4.1 the incoming queries were completed from one of three separate

workstations. The queries themselves were sent sequentially and not all at one once, but

each new query was sent to the HHs without knowing whether the query previous to it

had completed yet. In this case as each query was sent an overlap could occur where one

or more queries could be in the process of being serviced, while a new query is added to

the system. A new query was sent to the UNWSDS prototype every one second, and the

parameters used for HH searching within the query were determined randomly. The

query sending time was determined arbitrarily and the parameters used for HH searching

were: domain, name, description, function names, desired algorithms, desired

complexity, Technology, mobility, end-to-end delay time, and availability. All

experiments were conducted on a Local Area Network (LAN) connection which

consisted of all the computers within the same IP subnet, same network segment, and

 56

within the same room in the Cancer Pavilion. With the number of HHs being constant

and the number of queries increasing over time the expectation is that average response

time would increase. Along with the increase in the number of queries the inter-arrival

time of the queries would also increase. As the number of incoming queries increases, the

system becomes busy servicing those incoming requests while still servicing some

requests that may not have received results yet, and as more and more incoming queries

are being serviced, the average response time will continue to increase.

Number of Incoming queries vs Average Response Time
(constants HHs = 25, Web services = 15)

0

500

1000

1500

2000

2500

3000

3500

4000

10 20 30 40 50 60

Number of incoming queries

Av
er

ag
e

Re
sp

on
se

 T
im

e
(m

s)
_

Queries
Average Response Time

Figure 4.1 Number of incoming queries vs. Average Response Time with all HHs

Table 4.1 below represents the data obtained from the experimentation to create

Figure 4.1.

Queries 10 20 30 40 50 60
Average Response Time
(ms) 614.82 1285.68 1736.11 2545.21 3156.72 3450.61

Table 4.1 Number of incoming queries vs. Average Response Time with all HHs

 57

Figure 4.1 shows the Average Response Time with all the Headhunters active,

number of Web services constant at 15, and the number of incoming UNWSDS queries

increasing sequentially. By reviewing the graph it can be seen that the Average Response

Time increases linearly as the initial number of queries increases, but as the number of

queries continues to increase the response time continues to increase, and begins to level

off somewhat. Earlier URDS experiments [4] did not specifically look at average

response time for increasing number of incoming queries. Hypothetically, similar results

should be obtained from the URDS, but since a similar experiment was not conducted for

the URDS, an actual comparison cannot be made at this time. What is interesting to note

in the graph is that the the Average Response Time dips twice from the steady linear

increase. A reason for these dips occurring is that the HHs within the UNWSDS reach a

point of efficiency in their ability to coordinate and handle the incoming requests.

However once this threshold has been passed, the linear increase continues.

For Figure 4.2 the incoming queries were completed from one of three separate

workstations sequentially as with the experiment that produced Figure 4.1. With the

number of HHs and incoming queries being constant and the number of available

searchable Web services within the UNWSDS increasing, the expectation is that average

response time would increase. As the number of available Web services increases, the

time taken for a response to be sent from HHs as to what Web services are available

based on the selected criteria would increase marginally, and in turn would affect the

overall response time of the system. The increase in response time from the HHs is

explained by the fact that they use a database meta-repository. As the number of potential

selections increases within a database query, the response time also increases. This

increase in response time is more noticeable when multiple databases are queried as they

are in the HHs meta-repositories in UNWSDS.

 58

Number of Web Services vs. Average Response Time
(constants HHs = 25, Queries = 5)

0

1000

2000

3000

4000

5000

6000

7000

10 20 30 40 50 60 70 80 90 100

Number of Web Services

Av
er

ag
e

Re
sp

on
se

 T
im

e
(m

s)
_

Average Response Time
Web Services

Figure 4.2 Number of Web services vs. Average Response Time

Table 4.2 below represents the data obtained from the experimentation to create

Figure 4.2.

Table 4.2 Number of Web services vs. Average Response Time

Figure 4.2 shows the Average Response Time with all the Headhunters active,

number of incoming UNWSDS queries constant at 5, and the number of available Web

services increasing sequentially. By reviewing the graph it can be seen that the Average

Response Time increases linearly as the number of available Web services increases.

This is in line with the expectations before the experiment was executed and experiments

mentioned in [4]. As mentioned above, the increasing number of searchable and active

Web services available within the UNWSDS would have an effect on the response rate of

the HHs. Although the response rate would not increase dramatically it would be

noticeable as large numbers of Web services were added to the UNWSDS.

For Figure 4.3 the incoming queries were completed from one of three separate

workstations sequentially as with the experiment that produced Figure 4.1. With the

Average
Response
Time (ms) 1444.87 2001.03 2601.98 2902.76 3523.11 4102.32 4677.35 5023.96 5356.47 5773.54
Web
Services 10 20 30 40 50 60 70 80 90 100

 59

number of Web services being constant and the number of queries and available HHs

within the UNWSDS increasing, the expectation is that average response time would

increase. However, what Figure 4.3 specifically exemplifies is what effect to the average

response time will occur when the number of queries continues to increase, and the

number of HHs is dropped significantly. The expectation is that as the number of HHs

drops the response time would decrease even as more queries are added. The decrease in

HHs would offset the effect that increasing queries would have. By using Figure 4.1 as an

example, with less HHs available within the UNWSDS the response time decreases (the

opposite to what happened when more HHs were added in Figure 4.1).

Number of HHs vs. Average Response Time
(constant Web services = 15)

0

500

1000

1500

2000

2500

25 25 25 10 15 20 25 10 15

Number of HHs

Av
er

ag
e

Re
sp

on
se

 T
im

e
(m

s)
_

Average Response Time
HeadHunters
Queries

Figure 4.3 Number of HHs vs. Average Response Time

Table 4.3 below represents the data obtained from the experimentation to create

Figure 4.3.
Average
Response
Time (ms) 617.82 1267.82 1801.21 817.12 1010.12 1707.11 2356.43 1098.44 1377.23

HeadHunters 25 25 25 10 15 20 25 10 15
Queries 10 20 30 40 50 60 70 80 90

Table 4.3 Number of HHs vs. Average Response Time

 60

Figure 4.3 shows the Average Response Time with a varying number of

Headhunters active, an increasing number of incoming UNWSDS queries, and a constant

number of available Web services. By reviewing the graph it is seen that the Average

Response Time fluctuates depending on how many incoming queries and HHs are being

processed by the UNWSDS. Figure 4.2 displayed the effect that an increasing number of

queries had to the UNWSDS. The response time would increase as the number of queries

would increase assuming the number of HHs are held constant. However, if the number

of HHs changed during the increase in incoming queries, response time would also

change. What is noticed in Figure 4.3 is that if the number of HHs decreases significantly

(in this case 60%), the response time would also decrease significantly. Even as more and

more queries are processed, if the number of HHs is dropped, the response time also

decreases. This is in line with the expectations before the experiment was executed. As

mentioned above, a decrease in HHs would also decrease the response time which was

observed from figure 4.1 (increasing HHs = increasing response time). Nanditha Siram’s

URDS experiments [4] did not specifically look at average response time for this

experiment. Hypothetically, similar results should be obtained from the URDS, but since

a similar experiment was not conducted for the URDS, an actual comparison cannot be

made at this time.

The observations obtained from the above experimentations are summarized below:

• The number of incoming queries will increase the average response time. This

observation is supported by what is observed in Figure 4.1. As the number of

incoming queries increases, the system becomes busy servicing those requests

while still service other requests and an increase in response time will be the

result.

• The number of Web services available for Headhunter discovery will increase the

average response time. This observation is supported by what is observed in

Figure 4.2. This observation is also in line with URDS results in [4].

 61

• The number of Headhunters available within the UNWSDS will increase the

average response time. This observation is supported by what is observed in

Figure 4.3. It is also noticed in Figure 4.3 that reducing the number of

Headhunters would decrease average response time.

This chapter presented the experimental results and validation of the UNWSDS.

As mentioned earlier in this chapter, the limited number of Windows-OS systems

available for experimentation limited the number of experimentations that were done.

With more systems added to the UNWSDS, future work would include experiments done

to evaluate the scalability and fault tolerance of the UNWSDS. UNWSDS experimental

results were also compared with results obtained by Nanditha Siram’s URDS prototype

[4]. From these comparisons, the UNWSDS prototype performance was similar to the

performance of the URDS, with the average response time for both the UNWSDS and the

URDS having the same results when HHs were added or subtracted.

The next chapter concludes the project by presenting the issues the UNWSDS was

proposed to solve and suggests possible future extensions to this work.

 62

5. CONCLUSION AND FUTURE WORK

.NET is a new platform for building interoperable distributed applications that can

communicate over the Internet and are cross-platform interoperable.

The UNWSDS proposed in this project is based upon the URDS prototype [4],

and is meant to bridge the gap from the URDS to .NET Web services. The URDS

prototype was developed in Java and although Java could be used within .NET; Java

RMI, which was used for communication between the different components of the

URDS, could not. The UNWSDS prototype can be located on desktops, laptops, and

embedded devices either on a wired or wireless network, and utilize .NET Web services

for dynamic discovery, service consumption, and for a user friendly web interface. Once

the UNWSDS prototype was completed, testing was done to evaluate its efficiency

within the .NET and compact frameworks and compared with the original URDS

prototype.

The contributions of this project are:

• The creation of an architecture, the UNWSDS, which is based upon the URDS

prototype [4]. The UNWSDS extends the capabilities of the UniFrame

Approach to the Microsoft .NET platform.

• Implementation of a UNWSDS prototype based on the .NET model.

• Validation of the UNWSDS by experimentations and detailed case study.

Future work to complete for the UNWSDS involves enhancing the

implementation of the prototype and adding more UNWSDS Web services to the

prototype for further testing.

Some future work for the UNWSDS and the prototype includes:

 63

• One major restriction in the current prototype is that it appears CE IIS is in a Beta

form. It is expected that, as CE IIS becomes a more seasoned and supported Web

server package, the embedded device functionality can be tested more with .NET.

Web services cannot currently run as applications on an embedded device.

• Embedded devices still use embedded programming languages and are not

currently leveraging .NET. With the full release of CE.NET this is expected to

change.

• Connecting the Headhunter meta-repositories through heterogeneous merge

replication publisher/subscriber communication.

• Adding more systems to the UNWSDS for further scalability and fault tolerance

testing.

• Enhanced support for link failure detection.

In conclusion, this project has presented the UniFrame .NET Web Service

Discovery Service (UNWSDS), which facilitates the expansion of the UniFrame

Approach and extends the URDS to the Microsoft .NET platform. As the use of Web

services becomes more prolific over the Internet, a strong need exists for an effective and

efficient method of discovery for clients to use these services. The UNWSDS, coupled

with the UniFrame Approach, represents a promising method for the discovery of Web

services that are geographically scattered.

 64

LIST OF REFERENCES

[1] cs.iupui.edu/uniFrame, “UniFrame Meta-Component Model for Distributed Systems”,

http://www.cs.iupui.edu/uniFrame/description.html

[2] Jeffrey Richter, Applied Microsoft .NET Framework Programming, Microsoft Press,

Washington, 2002.

[3] Raje, R., Auguston, M., Bryant, B. R., Olson, A., Burt, C., “A Unified Approach

for the Integration of Distributed Heterogeneous Software Components”, Proceedings of

the Monterey Workshop on Engineering Automation for Software Intensive System

Integration, 2001, pp. 109-119.

[4] Nanditha N. Siram, "An Architecture for Discovery of Heterogeneous Software

Components", MS Thesis, Department of Computer and Information Science, Indiana

University Purdue University Indianapolis, March 2002.

[5] Universal Description, Discovery and Integration of Web Services, “UDDI Technical

White Paper”, September 2000,

http://www.uddi.org/pubs/Iru_UDDI_Technical_White_Paper.pdf

[6] Yasser Shohoud, Real World XML Web Services, Addison Wesley, Boston, 2003

[7] IBM, “Web services – the Web’s next revolution”, 2001, http://www-

105.ibm.com/developerworks/education.nsf/webservices-onlinecourse-

bytitle/BA84142372686CFB862569A400601C18?OpenDocument

[8] DevX, “Building Web Services with .NET”, 2001,

http://archive.devx.com/dotnet/articles/cp0901/cp0901-1/waws.asp

 65

[9] Universal Description, Discovery and Integration of Web Services, “UDDI V3

Specification”, July 2002, http://uddi.org/pubs/uddi_v3.htm

[10] ONJava, “An Introduction to WSIL”, October 2002,

http://www.onjava.com/pub/a/onjava/2002/10/16/wsil.html

[11] Microsoft Corporation, “Web Services Discovery Tool (Disco.exe)”, 2002,

http://msdn.microsoft.com/library/default.asp?url=/library/en-

us/cptools/html/cpgrfwebservicesdiscoverytooldiscoexe.asp

[12] Internet Journal, “Web Servers: What is an application server?”, 2002,

http://www.intranetjournal.com/faqs/webservers/appserver.html

[13] Microsoft Corporation, “What is the .NET Framework?”, May 2003,

http://www.microsoft.com/net/basics/framework.asp

[14] The Data Administration Newletter, “Doing –dot- NET right”, 2002,

http://www.tdan.com/i020hy04.htm

[15] Web Developer’s Virtual Library, “What is .NET?”, 2000,

http://www.wdvl.com/Authoring/ASP/NetRev/what_is.html

[16] IISFAQ, “What is IIS?”, 2003, http://www.iisfaq.com/default.aspx?View=A409

[17] Microsoft Corporation, “IIS Lockdown Tool 2.1”, 2002,

http://www.microsoft.com/downloads/details.aspx?FamilyID=dde9efc0-bb30-47eb-9a61-

fd755d23cdec&DisplayLang=en

 66

APPENDIX

Source Code

Styles.css

/*
Filename: Styles.css
Created Date: 3/28/03
Author: Bob Berbeco
Description: CSS Stylesheet for the Uniframe Project
*/

BODY
{
 font-weight: normal;
 font-size: 10pt;
 word-spacing: normal;
 text-transform: none;
 color: #003366;
 font-family: Arial;
 letter-spacing: normal;
 background-color: #999965;
}

H1, H2, H3, H4, H5, TH, THEAD, TFOOT
{
 COLOR: #003366;
}
H1 {
 font-family: Arial, Helvetica, sans-serif;
 font-size: 2em;
 font-weight: 700;
 font-style: normal;
 text-decoration: none;
 word-spacing: normal;
 letter-spacing: normal;
 text-transform: none;
 }

H2 {
 font-family: Arial, Helvetica, sans-serif;
 font-size: 1.75em;
 font-weight: 700;
 font-style: normal;
 text-decoration: none;
 word-spacing: normal;
 letter-spacing: normal;
 text-transform: none;
 }

H3 {
 font-family: Arial, Helvetica, sans-serif;

 67

 font-size: 1.58em;
 font-weight: 500;
 font-style: normal;
 text-decoration: none;
 word-spacing: normal;
 letter-spacing: normal;
 text-transform: none;
 }

H4 {
 font-family: Arial, Helvetica, sans-serif;
 font-size: 1.33em;
 font-weight: 500;
 text-decoration: none;
 word-spacing: normal;
 letter-spacing: normal;
 text-transform: none;
 }

H5, DT {
 font-family: Arial, Helvetica, sans-serif;
 font-size: 1em;
 font-weight: 700;
 font-style: normal;
 text-decoration: none;
 word-spacing: normal;
 letter-spacing: normal;
 text-transform: none;
 }

H6 {
 font-family: Arial, Helvetica, sans-serif;
 font-size: .8em;
 font-weight: 700;
 font-style: normal;
 text-decoration: none;
 word-spacing: normal;
 letter-spacing: normal;
 text-transform: none;
 }

TFOOT, THEAD {
 font-size: 1em;
 word-spacing: normal;
 letter-spacing: normal;
 text-transform: none;
 font-family: Arial, Helvetica, sans-serif;
 }

TH {
 vertical-align: baseline;
 font-size: 1em;
 font-weight: bold;
 word-spacing: normal;
 letter-spacing: normal;
 text-transform: none;

 68

 font-family: Arial, Helvetica, sans-serif;
 }

A:link {
 text-decoration: none;
 color: #3333cc;
 }

A:visited {
 text-decoration: none;
 color: #333399;
 }

A:active {
 text-decoration: none;
 color: #333399;
 }

A:hover {
 text-decoration: underline;
 color: #3333cc;
 }

SMALL {
 font-size: .7em;
 }

BIG {
 font-size: 1.17em;
 }

BLOCKQUOTE, PRE {
 font-family: Courier New, monospace;
 }

UL LI {
 list-style-type: square ;
 }

UL LI LI {
 list-style-type: disc;
 }

UL LI LI LI {
 list-style-type: circle;
 }

OL LI {
 list-style-type: decimal;
 }

OL OL LI {
 list-style-type: lower-alpha;
 }

 69

OL OL OL LI {
 list-style-type: lower-roman;
 }

IMG {
 margin-top: 5px;
 margin-left: 10px;
 margin-right: 10px;
 }
TABLE
{
 color: maroon;
 font-family: Arial;
 font-weight: normal;
 font-size: 10pt;
}

TD
{
 color: #003366;
 font-family: Arial;
 font-weight: normal;
 font-size: 10pt;
 vertical-align: baseline;
}

TR
{
 color: maroon;
 font-family: Arial;
 font-weight: normal;
 font-size: 10pt;
}

Web.config

<?xml version="1.0" encoding="utf-8" ?>
<configuration>

 <system.web>
 <identity impersonate="true" userName="uniframe" password="uniframe" />

 <!-- DYNAMIC DEBUG COMPILATION
 Set compilation debug="true" to insert debugging symbols (.pdb information)
 into the compiled page. Because this creates a larger file that executes
 more slowly, you should set this value to true only when debugging and to
 false at all other times. For more information, refer to the documentation about
 debugging ASP.NET files.
 -->
 <compilation defaultLanguage="vb" debug="true" />

 <!-- CUSTOM ERROR MESSAGES
 Set customErrors mode="On" or "RemoteOnly" to enable custom error messages, "Off" to disable.
 Add <error> tags for each of the errors you want to handle.

 70

 -->
 <customErrors mode="RemoteOnly" />

 <!-- AUTHENTICATION
 This section sets the authentication policies of the application. Possible modes are "Windows",
 "Forms", "Passport" and "None"
 -->
 <authentication mode="Windows" />

 <!-- AUTHORIZATION
 This section sets the authorization policies of the application. You can allow or deny access
 to application resources by user or role. Wildcards: "*" mean everyone, "?" means anonymous
 (unauthenticated) users.
 -->
 <authorization>
 <allow users="*" /> <!-- Allow all users -->

 <!-- <allow users="[comma separated list of users]"
 roles="[comma separated list of roles]"/>
 <deny users="[comma separated list of users]"
 roles="[comma separated list of roles]"/>
 -->
 </authorization>

 <!-- APPLICATION-LEVEL TRACE LOGGING
 Application-level tracing enables trace log output for every page within an application.
 Set trace enabled="true" to enable application trace logging. If pageOutput="true", the
 trace information will be displayed at the bottom of each page. Otherwise, you can view the
 application trace log by browsing the "trace.axd" page from your web application
 root.
 -->
 <trace enabled="false" requestLimit="10" pageOutput="false" traceMode="SortByTime"
localOnly="true" />

 <!-- SESSION STATE SETTINGS
 By default ASP.NET uses cookies to identify which requests belong to a particular session.
 If cookies are not available, a session can be tracked by adding a session identifier to the URL.
 To disable cookies, set sessionState cookieless="true".
 -->
 <sessionState
 mode="InProc"
 stateConnectionString="tcpip=127.0.0.1:42424"
 sqlConnectionString="data source=127.0.0.1;user id=sa;password="
 cookieless="false"
 timeout="20"
 />

 <!-- GLOBALIZATION
 This section sets the globalization settings of the application.
 -->
 <globalization requestEncoding="utf-8" responseEncoding="utf-8" />

 </system.web>

 71

</configuration>

UniFrameIndex.aspx

<%@ Page Language="vb" %>
<%@ Import Namespace="UniFrame.Headhunters" %>
<%@ Import Namespace="System" %>
<%@ Import Namespace="System.IO" %>
<%@ Import Namespace="System.Data" %>
<%@ Import Namespace="System.Data.SqlClient" %>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
 <HEAD>
 <title>UniFrame Index</title>
 <!--
Filename: UniFrameIndex.aspx
Created Date: 3/28/03
Author: Bob Berbeco
Description: This web page initiates Headhunters web service and
 provides user interface for selecting UniFrame functions
Modifications: 4/13/03 Bob Berbeco - added comments
-->
 <meta name="vs_defaultClientScript" content="JavaScript">
 <meta name="vs_targetSchema"
content="http://schemas.microsoft.com/intellisense/ie5">
 <meta name="GENERATOR" content="Microsoft Visual Studio.NET 7.0">
 <meta name="ProgId" content="VisualStudio.HTML">
 <meta name="Originator" content="Microsoft Visual Studio.NET 7.0">
 <LINK href="Styles.css" type="text/css" rel="stylesheet">
 <script runat="server">

 'Page load subroutine
 Sub Page_Load(sender As Object, e As EventArgs)
 If Not Page.IsPostBack Then
 Dim myFindWebServices as UniFrame.Headhunters = New
UniFrame.Headhunters
 myFindWebServices.FindWebServices()
 End If
 End Sub
 </script>
 </HEAD>
 <body MS_POSITIONING="GridLayout">
 <p align="left">
 </p>
 <table cellSpacing="1" cellPadding="1" width="530" border="0" ID="Table1"
bgcolor="#ffffff">
 <tr>
 <td><H3 align="center">Welcome to Bob Berbeco's .NET UniFrame
Prototype</H3>
 Please make your selection
below.

 <a href="UniFrameQuery.htm"
target="_new">UniFrame Query

 72

 <!--
 <a href="ComponentControl.aspx"
target="_new">UniFrame Component Control Panel-->

 <p><i> Comments:

 This web page
initiates the Headhunters webservice.</i></p>
 </td>
 </tr>
 </table>
 </body>
</HTML>

Components.vb

Option Strict Off
Option Explicit On

Imports System
Imports System.Data
Imports System.Runtime.Serialization
Imports System.Xml

<Serializable(), _
 System.ComponentModel.DesignerCategoryAttribute("code"), _
 System.Diagnostics.DebuggerStepThrough(), _
 System.ComponentModel.ToolboxItem(true)> _
Public Class Components
 Inherits DataSet

 Private tableCOMPONENT As COMPONENTDataTable

 Public Sub New()
 MyBase.New
 Me.InitClass
 Dim schemaChangedHandler As System.ComponentModel.CollectionChangeEventHandler =
AddressOf Me.SchemaChanged
 AddHandler Me.Tables.CollectionChanged, schemaChangedHandler
 AddHandler Me.Relations.CollectionChanged, schemaChangedHandler
 End Sub

 Protected Sub New(ByVal info As SerializationInfo, ByVal context As StreamingContext)
 MyBase.New
 Dim strSchema As String = CType(info.GetValue("XmlSchema", GetType(System.String)),String)
 If (Not (strSchema) Is Nothing) Then
 Dim ds As DataSet = New DataSet
 ds.ReadXmlSchema(New XmlTextReader(New System.IO.StringReader(strSchema)))
 If (Not (ds.Tables("COMPONENT")) Is Nothing) Then
 Me.Tables.Add(New COMPONENTDataTable(ds.Tables("COMPONENT")))
 End If
 Me.DataSetName = ds.DataSetName
 Me.Prefix = ds.Prefix
 Me.Namespace = ds.Namespace
 Me.Locale = ds.Locale

 73

 Me.CaseSensitive = ds.CaseSensitive
 Me.EnforceConstraints = ds.EnforceConstraints
 Me.Merge(ds, false, System.Data.MissingSchemaAction.Add)
 Me.InitVars
 Else
 Me.InitClass
 End If
 Me.GetSerializationData(info, context)
 Dim schemaChangedHandler As System.ComponentModel.CollectionChangeEventHandler =
AddressOf Me.SchemaChanged
 AddHandler Me.Tables.CollectionChanged, schemaChangedHandler
 AddHandler Me.Relations.CollectionChanged, schemaChangedHandler
 End Sub

 <System.ComponentModel.Browsable(false), _

System.ComponentModel.DesignerSerializationVisibilityAttribute(System.ComponentModel.DesignerSeri
alizationVisibility.Content)> _
 Public ReadOnly Property COMPONENT As COMPONENTDataTable
 Get
 Return Me.tableCOMPONENT
 End Get
 End Property

 Public Overrides Function Clone() As DataSet
 Dim cln As Components = CType(MyBase.Clone,Components)
 cln.InitVars
 Return cln
 End Function

 Protected Overrides Function ShouldSerializeTables() As Boolean
 Return false
 End Function

 Protected Overrides Function ShouldSerializeRelations() As Boolean
 Return false
 End Function

 Protected Overrides Sub ReadXmlSerializable(ByVal reader As XmlReader)
 Me.Reset
 Dim ds As DataSet = New DataSet
 ds.ReadXml(reader)
 If (Not (ds.Tables("COMPONENT")) Is Nothing) Then
 Me.Tables.Add(New COMPONENTDataTable(ds.Tables("COMPONENT")))
 End If
 Me.DataSetName = ds.DataSetName
 Me.Prefix = ds.Prefix
 Me.Namespace = ds.Namespace
 Me.Locale = ds.Locale
 Me.CaseSensitive = ds.CaseSensitive
 Me.EnforceConstraints = ds.EnforceConstraints
 Me.Merge(ds, false, System.Data.MissingSchemaAction.Add)
 Me.InitVars
 End Sub

 Protected Overrides Function GetSchemaSerializable() As System.Xml.Schema.XmlSchema

 74

 Dim stream As System.IO.MemoryStream = New System.IO.MemoryStream
 Me.WriteXmlSchema(New XmlTextWriter(stream, Nothing))
 stream.Position = 0
 Return System.Xml.Schema.XmlSchema.Read(New XmlTextReader(stream), Nothing)
 End Function

 Friend Sub InitVars()
 Me.tableCOMPONENT = CType(Me.Tables("COMPONENT"),COMPONENTDataTable)
 If (Not (Me.tableCOMPONENT) Is Nothing) Then
 Me.tableCOMPONENT.InitVars
 End If
 End Sub

 Private Sub InitClass()
 Me.DataSetName = "Components"
 Me.Prefix = ""
 Me.Namespace = "http://www.tempuri.org/Components.xsd"
 Me.Locale = New System.Globalization.CultureInfo("en-US")
 Me.CaseSensitive = false
 Me.EnforceConstraints = true
 Me.tableCOMPONENT = New COMPONENTDataTable
 Me.Tables.Add(Me.tableCOMPONENT)
 End Sub

 Private Function ShouldSerializeCOMPONENT() As Boolean
 Return false
 End Function

 Private Sub SchemaChanged(ByVal sender As Object, ByVal e As
System.ComponentModel.CollectionChangeEventArgs)
 If (e.Action = System.ComponentModel.CollectionChangeAction.Remove) Then
 Me.InitVars
 End If
 End Sub

 Public Delegate Sub COMPONENTRowChangeEventHandler(ByVal sender As Object, ByVal e As
COMPONENTRowChangeEvent)

 <System.Diagnostics.DebuggerStepThrough()> _
 Public Class COMPONENTDataTable
 Inherits DataTable
 Implements System.Collections.IEnumerable

 Private columnPID As DataColumn

 Private columnID As DataColumn

 Private columnNAME As DataColumn

 Private columnDESCRIPTION As DataColumn

 Private columnTHE_FUNCTION As DataColumn

 Private columnALGORITHM As DataColumn

 Private columnCOMPLEXITY As DataColumn

 75

 Private columnDOMAIN As DataColumn

 Private columnTECHNOLOGY As DataColumn

 Private columnCOLLABORATORS As DataColumn

 Private columnEND2ENDDELAY As DataColumn

 Private columnAVAILABILITY As DataColumn

 Private columnMOBILITY As DataColumn

 Private columnACTIVE As DataColumn

 Friend Sub New()
 MyBase.New("COMPONENT")
 Me.InitClass
 End Sub

 Friend Sub New(ByVal table As DataTable)
 MyBase.New(table.TableName)
 If (table.CaseSensitive <> table.DataSet.CaseSensitive) Then
 Me.CaseSensitive = table.CaseSensitive
 End If
 If (table.Locale.ToString <> table.DataSet.Locale.ToString) Then
 Me.Locale = table.Locale
 End If
 If (table.Namespace <> table.DataSet.Namespace) Then
 Me.Namespace = table.Namespace
 End If
 Me.Prefix = table.Prefix
 Me.MinimumCapacity = table.MinimumCapacity
 Me.DisplayExpression = table.DisplayExpression
 End Sub

 <System.ComponentModel.Browsable(false)> _
 Public ReadOnly Property Count As Integer
 Get
 Return Me.Rows.Count
 End Get
 End Property

 Friend ReadOnly Property PIDColumn As DataColumn
 Get
 Return Me.columnPID
 End Get
 End Property

 Friend ReadOnly Property IDColumn As DataColumn
 Get
 Return Me.columnID
 End Get
 End Property

 Friend ReadOnly Property NAMEColumn As DataColumn

 76

 Get
 Return Me.columnNAME
 End Get
 End Property

 Friend ReadOnly Property DESCRIPTIONColumn As DataColumn
 Get
 Return Me.columnDESCRIPTION
 End Get
 End Property

 Friend ReadOnly Property THE_FUNCTIONColumn As DataColumn
 Get
 Return Me.columnTHE_FUNCTION
 End Get
 End Property

 Friend ReadOnly Property ALGORITHMColumn As DataColumn
 Get
 Return Me.columnALGORITHM
 End Get
 End Property

 Friend ReadOnly Property COMPLEXITYColumn As DataColumn
 Get
 Return Me.columnCOMPLEXITY
 End Get
 End Property

 Friend ReadOnly Property DOMAINColumn As DataColumn
 Get
 Return Me.columnDOMAIN
 End Get
 End Property

 Friend ReadOnly Property TECHNOLOGYColumn As DataColumn
 Get
 Return Me.columnTECHNOLOGY
 End Get
 End Property

 Friend ReadOnly Property COLLABORATORSColumn As DataColumn
 Get
 Return Me.columnCOLLABORATORS
 End Get
 End Property

 Friend ReadOnly Property END2ENDDELAYColumn As DataColumn
 Get
 Return Me.columnEND2ENDDELAY
 End Get
 End Property

 Friend ReadOnly Property AVAILABILITYColumn As DataColumn
 Get
 Return Me.columnAVAILABILITY

 77

 End Get
 End Property

 Friend ReadOnly Property MOBILITYColumn As DataColumn
 Get
 Return Me.columnMOBILITY
 End Get
 End Property

 Friend ReadOnly Property ACTIVEColumn As DataColumn
 Get
 Return Me.columnACTIVE
 End Get
 End Property

 Public Default ReadOnly Property Item(ByVal index As Integer) As COMPONENTRow
 Get
 Return CType(Me.Rows(index),COMPONENTRow)
 End Get
 End Property

 Public Event COMPONENTRowChanged As COMPONENTRowChangeEventHandler

 Public Event COMPONENTRowChanging As COMPONENTRowChangeEventHandler

 Public Event COMPONENTRowDeleted As COMPONENTRowChangeEventHandler

 Public Event COMPONENTRowDeleting As COMPONENTRowChangeEventHandler

 Public Overloads Sub AddCOMPONENTRow(ByVal row As COMPONENTRow)
 Me.Rows.Add(row)
 End Sub

 Public Overloads Function AddCOMPONENTRow(ByVal PID As System.Guid, ByVal ID As String,
ByVal NAME As String, ByVal DESCRIPTION As String, ByVal THE_FUNCTION As String, ByVal
ALGORITHM As String, ByVal COMPLEXITY As String, ByVal DOMAIN As String, ByVal
TECHNOLOGY As String, ByVal COLLABORATORS As String, ByVal END2ENDDELAY As String,
ByVal AVAILABILITY As String, ByVal MOBILITY As String, ByVal ACTIVE As String) As
COMPONENTRow
 Dim rowCOMPONENTRow As COMPONENTRow = CType(Me.NewRow,COMPONENTRow)
 rowCOMPONENTRow.ItemArray = New Object() {PID, ID, NAME, DESCRIPTION,
THE_FUNCTION, ALGORITHM, COMPLEXITY, DOMAIN, TECHNOLOGY, COLLABORATORS,
END2ENDDELAY, AVAILABILITY, MOBILITY, ACTIVE}
 Me.Rows.Add(rowCOMPONENTRow)
 Return rowCOMPONENTRow
 End Function

 Public Function FindByPID(ByVal PID As System.Guid) As COMPONENTRow
 Return CType(Me.Rows.Find(New Object() {PID}),COMPONENTRow)
 End Function

 Public Function GetEnumerator() As System.Collections.IEnumerator Implements
System.Collections.IEnumerable.GetEnumerator
 Return Me.Rows.GetEnumerator
 End Function

 78

 Public Overrides Function Clone() As DataTable
 Dim cln As COMPONENTDataTable = CType(MyBase.Clone,COMPONENTDataTable)
 cln.InitVars
 Return cln
 End Function

 Protected Overrides Function CreateInstance() As DataTable
 Return New COMPONENTDataTable
 End Function

 Friend Sub InitVars()
 Me.columnPID = Me.Columns("PID")
 Me.columnID = Me.Columns("ID")
 Me.columnNAME = Me.Columns("NAME")
 Me.columnDESCRIPTION = Me.Columns("DESCRIPTION")
 Me.columnTHE_FUNCTION = Me.Columns("THE_FUNCTION")
 Me.columnALGORITHM = Me.Columns("ALGORITHM")
 Me.columnCOMPLEXITY = Me.Columns("COMPLEXITY")
 Me.columnDOMAIN = Me.Columns("DOMAIN")
 Me.columnTECHNOLOGY = Me.Columns("TECHNOLOGY")
 Me.columnCOLLABORATORS = Me.Columns("COLLABORATORS")
 Me.columnEND2ENDDELAY = Me.Columns("END2ENDDELAY")
 Me.columnAVAILABILITY = Me.Columns("AVAILABILITY")
 Me.columnMOBILITY = Me.Columns("MOBILITY")
 Me.columnACTIVE = Me.Columns("ACTIVE")
 End Sub

 Private Sub InitClass()
 Me.columnPID = New DataColumn("PID", GetType(System.Guid), Nothing,
System.Data.MappingType.Element)
 Me.Columns.Add(Me.columnPID)
 Me.columnID = New DataColumn("ID", GetType(System.String), Nothing,
System.Data.MappingType.Element)
 Me.Columns.Add(Me.columnID)
 Me.columnNAME = New DataColumn("NAME", GetType(System.String), Nothing,
System.Data.MappingType.Element)
 Me.Columns.Add(Me.columnNAME)
 Me.columnDESCRIPTION = New DataColumn("DESCRIPTION", GetType(System.String),
Nothing, System.Data.MappingType.Element)
 Me.Columns.Add(Me.columnDESCRIPTION)
 Me.columnTHE_FUNCTION = New DataColumn("THE_FUNCTION", GetType(System.String),
Nothing, System.Data.MappingType.Element)
 Me.Columns.Add(Me.columnTHE_FUNCTION)
 Me.columnALGORITHM = New DataColumn("ALGORITHM", GetType(System.String),
Nothing, System.Data.MappingType.Element)
 Me.Columns.Add(Me.columnALGORITHM)
 Me.columnCOMPLEXITY = New DataColumn("COMPLEXITY", GetType(System.String),
Nothing, System.Data.MappingType.Element)
 Me.Columns.Add(Me.columnCOMPLEXITY)
 Me.columnDOMAIN = New DataColumn("DOMAIN", GetType(System.String), Nothing,
System.Data.MappingType.Element)
 Me.Columns.Add(Me.columnDOMAIN)
 Me.columnTECHNOLOGY = New DataColumn("TECHNOLOGY", GetType(System.String),
Nothing, System.Data.MappingType.Element)
 Me.Columns.Add(Me.columnTECHNOLOGY)
 Me.columnCOLLABORATORS = New DataColumn("COLLABORATORS",

 79

GetType(System.String), Nothing, System.Data.MappingType.Element)
 Me.Columns.Add(Me.columnCOLLABORATORS)
 Me.columnEND2ENDDELAY = New DataColumn("END2ENDDELAY",
GetType(System.String), Nothing, System.Data.MappingType.Element)
 Me.Columns.Add(Me.columnEND2ENDDELAY)
 Me.columnAVAILABILITY = New DataColumn("AVAILABILITY", GetType(System.String),
Nothing, System.Data.MappingType.Element)
 Me.Columns.Add(Me.columnAVAILABILITY)
 Me.columnMOBILITY = New DataColumn("MOBILITY", GetType(System.String), Nothing,
System.Data.MappingType.Element)
 Me.Columns.Add(Me.columnMOBILITY)
 Me.columnACTIVE = New DataColumn("ACTIVE", GetType(System.String), Nothing,
System.Data.MappingType.Element)
 Me.Columns.Add(Me.columnACTIVE)
 Me.Constraints.Add(New UniqueConstraint("Constraint1", New DataColumn() {Me.columnPID},
true))
 Me.columnPID.AllowDBNull = false
 Me.columnPID.Unique = true
 Me.columnID.AllowDBNull = false
 End Sub

 Public Function NewCOMPONENTRow() As COMPONENTRow
 Return CType(Me.NewRow,COMPONENTRow)
 End Function

 Protected Overrides Function NewRowFromBuilder(ByVal builder As DataRowBuilder) As DataRow
 Return New COMPONENTRow(builder)
 End Function

 Protected Overrides Function GetRowType() As System.Type
 Return GetType(COMPONENTRow)
 End Function

 Protected Overrides Sub OnRowChanged(ByVal e As DataRowChangeEventArgs)
 MyBase.OnRowChanged(e)
 If (Not (Me.COMPONENTRowChangedEvent) Is Nothing) Then
 RaiseEvent COMPONENTRowChanged(Me, New
COMPONENTRowChangeEvent(CType(e.Row,COMPONENTRow), e.Action))
 End If
 End Sub

 Protected Overrides Sub OnRowChanging(ByVal e As DataRowChangeEventArgs)
 MyBase.OnRowChanging(e)
 If (Not (Me.COMPONENTRowChangingEvent) Is Nothing) Then
 RaiseEvent COMPONENTRowChanging(Me, New
COMPONENTRowChangeEvent(CType(e.Row,COMPONENTRow), e.Action))
 End If
 End Sub

 Protected Overrides Sub OnRowDeleted(ByVal e As DataRowChangeEventArgs)
 MyBase.OnRowDeleted(e)
 If (Not (Me.COMPONENTRowDeletedEvent) Is Nothing) Then
 RaiseEvent COMPONENTRowDeleted(Me, New
COMPONENTRowChangeEvent(CType(e.Row,COMPONENTRow), e.Action))
 End If
 End Sub

 80

 Protected Overrides Sub OnRowDeleting(ByVal e As DataRowChangeEventArgs)
 MyBase.OnRowDeleting(e)
 If (Not (Me.COMPONENTRowDeletingEvent) Is Nothing) Then
 RaiseEvent COMPONENTRowDeleting(Me, New
COMPONENTRowChangeEvent(CType(e.Row,COMPONENTRow), e.Action))
 End If
 End Sub

 Public Sub RemoveCOMPONENTRow(ByVal row As COMPONENTRow)
 Me.Rows.Remove(row)
 End Sub
 End Class

 <System.Diagnostics.DebuggerStepThrough()> _
 Public Class COMPONENTRow
 Inherits DataRow

 Private tableCOMPONENT As COMPONENTDataTable

 Friend Sub New(ByVal rb As DataRowBuilder)
 MyBase.New(rb)
 Me.tableCOMPONENT = CType(Me.Table,COMPONENTDataTable)
 End Sub

 Public Property PID As System.Guid
 Get
 Return CType(Me(Me.tableCOMPONENT.PIDColumn),System.Guid)
 End Get
 Set
 Me(Me.tableCOMPONENT.PIDColumn) = value
 End Set
 End Property

 Public Property ID As String
 Get
 Return CType(Me(Me.tableCOMPONENT.IDColumn),String)
 End Get
 Set
 Me(Me.tableCOMPONENT.IDColumn) = value
 End Set
 End Property

 Public Property NAME As String
 Get
 Try
 Return CType(Me(Me.tableCOMPONENT.NAMEColumn),String)
 Catch e As InvalidCastException
 Throw New StrongTypingException("Cannot get value because it is DBNull.", e)
 End Try
 End Get
 Set
 Me(Me.tableCOMPONENT.NAMEColumn) = value
 End Set
 End Property

 81

 Public Property DESCRIPTION As String
 Get
 Try
 Return CType(Me(Me.tableCOMPONENT.DESCRIPTIONColumn),String)
 Catch e As InvalidCastException
 Throw New StrongTypingException("Cannot get value because it is DBNull.", e)
 End Try
 End Get
 Set
 Me(Me.tableCOMPONENT.DESCRIPTIONColumn) = value
 End Set
 End Property

 Public Property THE_FUNCTION As String
 Get
 Try
 Return CType(Me(Me.tableCOMPONENT.THE_FUNCTIONColumn),String)
 Catch e As InvalidCastException
 Throw New StrongTypingException("Cannot get value because it is DBNull.", e)
 End Try
 End Get
 Set
 Me(Me.tableCOMPONENT.THE_FUNCTIONColumn) = value
 End Set
 End Property

 Public Property ALGORITHM As String
 Get
 Try
 Return CType(Me(Me.tableCOMPONENT.ALGORITHMColumn),String)
 Catch e As InvalidCastException
 Throw New StrongTypingException("Cannot get value because it is DBNull.", e)
 End Try
 End Get
 Set
 Me(Me.tableCOMPONENT.ALGORITHMColumn) = value
 End Set
 End Property

 Public Property COMPLEXITY As String
 Get
 Try
 Return CType(Me(Me.tableCOMPONENT.COMPLEXITYColumn),String)
 Catch e As InvalidCastException
 Throw New StrongTypingException("Cannot get value because it is DBNull.", e)
 End Try
 End Get
 Set
 Me(Me.tableCOMPONENT.COMPLEXITYColumn) = value
 End Set
 End Property

 Public Property DOMAIN As String
 Get
 Try
 Return CType(Me(Me.tableCOMPONENT.DOMAINColumn),String)

 82

 Catch e As InvalidCastException
 Throw New StrongTypingException("Cannot get value because it is DBNull.", e)
 End Try
 End Get
 Set
 Me(Me.tableCOMPONENT.DOMAINColumn) = value
 End Set
 End Property

 Public Property TECHNOLOGY As String
 Get
 Try
 Return CType(Me(Me.tableCOMPONENT.TECHNOLOGYColumn),String)
 Catch e As InvalidCastException
 Throw New StrongTypingException("Cannot get value because it is DBNull.", e)
 End Try
 End Get
 Set
 Me(Me.tableCOMPONENT.TECHNOLOGYColumn) = value
 End Set
 End Property

 Public Property COLLABORATORS As String
 Get
 Try
 Return CType(Me(Me.tableCOMPONENT.COLLABORATORSColumn),String)
 Catch e As InvalidCastException
 Throw New StrongTypingException("Cannot get value because it is DBNull.", e)
 End Try
 End Get
 Set
 Me(Me.tableCOMPONENT.COLLABORATORSColumn) = value
 End Set
 End Property

 Public Property END2ENDDELAY As String
 Get
 Try
 Return CType(Me(Me.tableCOMPONENT.END2ENDDELAYColumn),String)
 Catch e As InvalidCastException
 Throw New StrongTypingException("Cannot get value because it is DBNull.", e)
 End Try
 End Get
 Set
 Me(Me.tableCOMPONENT.END2ENDDELAYColumn) = value
 End Set
 End Property

 Public Property AVAILABILITY As String
 Get
 Try
 Return CType(Me(Me.tableCOMPONENT.AVAILABILITYColumn),String)
 Catch e As InvalidCastException
 Throw New StrongTypingException("Cannot get value because it is DBNull.", e)
 End Try
 End Get

 83

 Set
 Me(Me.tableCOMPONENT.AVAILABILITYColumn) = value
 End Set
 End Property

 Public Property MOBILITY As String
 Get
 Try
 Return CType(Me(Me.tableCOMPONENT.MOBILITYColumn),String)
 Catch e As InvalidCastException
 Throw New StrongTypingException("Cannot get value because it is DBNull.", e)
 End Try
 End Get
 Set
 Me(Me.tableCOMPONENT.MOBILITYColumn) = value
 End Set
 End Property

 Public Property ACTIVE As String
 Get
 Try
 Return CType(Me(Me.tableCOMPONENT.ACTIVEColumn),String)
 Catch e As InvalidCastException
 Throw New StrongTypingException("Cannot get value because it is DBNull.", e)
 End Try
 End Get
 Set
 Me(Me.tableCOMPONENT.ACTIVEColumn) = value
 End Set
 End Property

 Public Function IsNAMENull() As Boolean
 Return Me.IsNull(Me.tableCOMPONENT.NAMEColumn)
 End Function

 Public Sub SetNAMENull()
 Me(Me.tableCOMPONENT.NAMEColumn) = System.Convert.DBNull
 End Sub

 Public Function IsDESCRIPTIONNull() As Boolean
 Return Me.IsNull(Me.tableCOMPONENT.DESCRIPTIONColumn)
 End Function

 Public Sub SetDESCRIPTIONNull()
 Me(Me.tableCOMPONENT.DESCRIPTIONColumn) = System.Convert.DBNull
 End Sub

 Public Function IsTHE_FUNCTIONNull() As Boolean
 Return Me.IsNull(Me.tableCOMPONENT.THE_FUNCTIONColumn)
 End Function

 Public Sub SetTHE_FUNCTIONNull()
 Me(Me.tableCOMPONENT.THE_FUNCTIONColumn) = System.Convert.DBNull
 End Sub

 Public Function IsALGORITHMNull() As Boolean

 84

 Return Me.IsNull(Me.tableCOMPONENT.ALGORITHMColumn)
 End Function

 Public Sub SetALGORITHMNull()
 Me(Me.tableCOMPONENT.ALGORITHMColumn) = System.Convert.DBNull
 End Sub

 Public Function IsCOMPLEXITYNull() As Boolean
 Return Me.IsNull(Me.tableCOMPONENT.COMPLEXITYColumn)
 End Function

 Public Sub SetCOMPLEXITYNull()
 Me(Me.tableCOMPONENT.COMPLEXITYColumn) = System.Convert.DBNull
 End Sub

 Public Function IsDOMAINNull() As Boolean
 Return Me.IsNull(Me.tableCOMPONENT.DOMAINColumn)
 End Function

 Public Sub SetDOMAINNull()
 Me(Me.tableCOMPONENT.DOMAINColumn) = System.Convert.DBNull
 End Sub

 Public Function IsTECHNOLOGYNull() As Boolean
 Return Me.IsNull(Me.tableCOMPONENT.TECHNOLOGYColumn)
 End Function

 Public Sub SetTECHNOLOGYNull()
 Me(Me.tableCOMPONENT.TECHNOLOGYColumn) = System.Convert.DBNull
 End Sub

 Public Function IsCOLLABORATORSNull() As Boolean
 Return Me.IsNull(Me.tableCOMPONENT.COLLABORATORSColumn)
 End Function

 Public Sub SetCOLLABORATORSNull()
 Me(Me.tableCOMPONENT.COLLABORATORSColumn) = System.Convert.DBNull
 End Sub

 Public Function IsEND2ENDDELAYNull() As Boolean
 Return Me.IsNull(Me.tableCOMPONENT.END2ENDDELAYColumn)
 End Function

 Public Sub SetEND2ENDDELAYNull()
 Me(Me.tableCOMPONENT.END2ENDDELAYColumn) = System.Convert.DBNull
 End Sub

 Public Function IsAVAILABILITYNull() As Boolean
 Return Me.IsNull(Me.tableCOMPONENT.AVAILABILITYColumn)
 End Function

 Public Sub SetAVAILABILITYNull()
 Me(Me.tableCOMPONENT.AVAILABILITYColumn) = System.Convert.DBNull
 End Sub

 Public Function IsMOBILITYNull() As Boolean

 85

 Return Me.IsNull(Me.tableCOMPONENT.MOBILITYColumn)
 End Function

 Public Sub SetMOBILITYNull()
 Me(Me.tableCOMPONENT.MOBILITYColumn) = System.Convert.DBNull
 End Sub

 Public Function IsACTIVENull() As Boolean
 Return Me.IsNull(Me.tableCOMPONENT.ACTIVEColumn)
 End Function

 Public Sub SetACTIVENull()
 Me(Me.tableCOMPONENT.ACTIVEColumn) = System.Convert.DBNull
 End Sub
 End Class

 <System.Diagnostics.DebuggerStepThrough()> _
 Public Class COMPONENTRowChangeEvent
 Inherits EventArgs

 Private eventRow As COMPONENTRow

 Private eventAction As DataRowAction

 Public Sub New(ByVal row As COMPONENTRow, ByVal action As DataRowAction)
 MyBase.New
 Me.eventRow = row
 Me.eventAction = action
 End Sub

 Public ReadOnly Property Row As COMPONENTRow
 Get
 Return Me.eventRow
 End Get
 End Property

 Public ReadOnly Property Action As DataRowAction
 Get
 Return Me.eventAction
 End Get
 End Property
 End Class
End Class

UniFrameQuery.htm

<%@ Page Language="vb" AutoEventWireup="false" Codebehind="UniFrameQuery.aspx.vb"
Inherits="UniFrame.UniFrameQuery" %>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<!--
Filename: UniFrameQuery.htm
Created Date: 3/28/03
Author: Bob Berbeco
Description: This web page takes user input from form and passes it to
 ComponentList.aspx for component searching via Head Hunters

 86

Modifications: 4/13/03 Bob Berbeco - added comments
-->
<html>
 <head>
 <title>UniFrameQuery</title>
 <meta content="Microsoft Visual Studio.NET 7.0" name="GENERATOR">
 <meta content="Visual Basic 7.0" name="CODE_LANGUAGE">
 <meta content="JavaScript" name="vs_defaultClientScript">
 <meta content="http://schemas.microsoft.com/intellisense/ie5"
name="vs_targetSchema">
 <meta http-equiv="PRAGMA" content="NO-CACHE">
 <LINK href="Styles.css" type="text/css" rel="stylesheet">
 </head>
 <body MS_POSITIONING="GridLayout">
 <form id="queryFilterForm" action="ComponentList.aspx" method="post"
runat="server">
 <p align="left">
 </p>
 <H3>UniFrame Query Form</H3>
 <p><i>Comments:

 This web page takes user input from form and passes it to
ComponentList.aspx
 for component searching via Head Hunters.

 Enter search criteria and click Search UniFrame.</i></p>
 <table cellSpacing="1" cellPadding="1" width="774" border="0">
 <tr>
 <!-- Search by component details section -->
 <td bgColor="#cccccc" colSpan="5" height="19">
 Search By Component Details
 </td>
 <td width="5"></td>
 </tr>
 <tr>
 <td width="104" height="0"></td>
 <td width="137"></td>
 <td width="60"></td>
 <td width="277"></td>
 <td width="184"></td>
 <td width="5"></td>
 </tr>
 <tr>
 <td colSpan="2" height="21">Domain</td>
 <td colSpan="4" height="21"><select name="domain">
 <option value="Finance"
selected>Finance</option>
 <option
value="Manufacturing">Manufacturing</option>
 </select>
 </td>
 </tr>
 <tr>
 <td colSpan="2" height="37">Component Name
<small><i>(Enter Keywords)</i></small></td>
 <td colSpan="3" height="37">
 <input type="text" size="80"
name="componentName">

 87

 </td>
 <td width="5" height="37"></td>
 </tr>
 <tr>
 <td colSpan="2" height="40">Component Description
<small><i>(Enter Keywords)</i></small>
 </td>
 <td colSpan="3" height="40">
 <input type="text" size="80"
name="componentDescription">
 </td>
 <td width="5" height="40"></td>
 </tr>
 <tr>
 <td colSpan="2" height="37">
 <p>Function Names <small><i>(Enter
Keywords)</i></small>
 </p>
 </td>
 <td colSpan="3" height="37">
 <input type="text" size="80"
name="functionNames">
 </td>
 <td width="5" height="37"></td>
 </tr>
 <tr>
 <td bgColor="#cccccc" colSpan="5" height="19">
 <!-- Search by functional attributes section -->
 Search By Functional Attributes
 </td>
 <td width="5"></td>
 </tr>
 <tr>
 <td colSpan="2" height="38">Desired Algorithms
<small><i>(Enter Keywords)</i></small>
 </td>
 <td colSpan="3" height="38">
 <input type="text" size="80" name="algorithms">
 </td>
 <td width="5" height="38"></td>
 </tr>
 <tr>
 <td colSpan="2" height="40">Desired Complexity
<small><i>(Enter Keywords)</i></small>
 </td>
 <td colSpan="3" height="40">
 <input type="text" size="80" name="complexity">
 </td>
 <td width="5" height="40"></td>
 </tr>
 <tr>
 <td colSpan="2" height="30">Technology</td>
 <td colSpan="4"><select name="technology">
 <option value="ASP.NET"
selected>ASP.NET</option>
 <option value="Java-RMI">Java-

 88

RMI</option>
 <option
value="CORBA">CORBA</option>
 <option
value="Voyager">Voyager</option>
 <option value="NONE">* None *</option>
 </select>
 </td>
 </tr>
 <tr>
 <td bgColor="#cccccc" colSpan="5" height="19">
 <!-- Search by auxillary attibutes section -->
 Search By Auxillary Attributes
 </td>
 <td width="5"></td>
 </tr>
 <tr>
 <td colSpan="2" height="30">Mobility</td>
 <td colSpan="4"><select name="mobility">
 <option value="No" selected>No</option>
 <option value="Yes">Yes</option>
 </select>
 </td>
 </tr>
 <tr>
 <!-- Search by QOS Metrics section -->
 <td bgColor="#cccccc" colSpan="5" height="19">
 Search By QOS Metrics</td>
 <td width="5"></td>
 </tr>
 <tr>
 <td width="104" bgColor="#cccccc" height="15">Select</td>
 <td bgColor="#cccccc" colSpan="2">QOS Parameter</td>
 <td width="600" bgColor="#cccccc">Constraints
<small><i>(* can be used for a range -
 such as 4* = 40-49)</small></i></td>
 <td width="5"></td>
 </tr>
 <tr>
 <td width="104" height="41">
 <input type="checkbox" value="end2endDelay"
name="qosMetric">
 </td>
 <td colSpan="2">End-to-end Delay
 </td>
 <td width="277">
 <input type="text" size="50"
name="end2endDelayValue">
 </td>
 <td width="184">
 </td>
 <td width="5"></td>
 </tr>
 <tr>
 <td width="104" height="41">
 <input type="checkbox" value="availibility"

 89

name="qosMetric">
 </td>
 <td colSpan="2">Availability</td>
 <td width="277">
 <input type="text" size="50"
name="availabilityValue">
 </td>
 <td width="184">
 </td>
 <td width="5"></td>
 </tr>
 <tr>
 </tr>
 </table>
 <p align="center">
 <input type="submit" name="SubmitForm" value="Search
UniFrame"> <input type="reset" name="Submit2" value="Reset Form">
 </p>
 </form>
 </body>
</html>

Headhunters.asmx.vb

'Filename: Headhunters.asmx.vb
'Created Date: 3/28/03
'Author: Bob Berbeco
'Description: This file is the main web service for the UniFrame Headhunters.
' The web service refreshes the HeadHunter meta-data tables
' based on the following algorithm:
' 1) User inputs query
' 2) Query is started
' 3) Each HeadHunter looks in their directory for active web service
' components
' 4) Each HeadHunter finds components and adds them to their meta-data
' tables (database)
' 5) Once Headhunters have completed their meta-data refresh, the
' actual query starts
' There are three UniFrame Headhunters being utilized
' Components are housed on a desktop, laptop, and embedded device
'Modifications: 4/13/03 Bob Berbeco - added comments
Imports System.Web.Services
Imports System.Data
Imports System.Data.SqlClient
Imports System.IO
Imports System

<WebService(Namespace:="http://localhost/rberbeco/UniFrame/Headhunters")> _
Public Class Headhunters
 Inherits System.Web.Services.WebService

#Region " Web Services Designer Generated Code "

 Public Sub New()
 MyBase.New()

 90

 'This call is required by the Web Services Designer.
 InitializeComponent()

 'Add your own initialization code after the InitializeComponent() call

 End Sub

 'Required by the Web Services Designer
 Private components As System.ComponentModel.IContainer

 'NOTE: The following procedure is required by the Web Services Designer
 'It can be modified using the Web Services Designer.
 'Do not modify it using the code editor.
 <System.Diagnostics.DebuggerStepThrough()> Private Sub InitializeComponent()
 components = New System.ComponentModel.Container()
 End Sub

 Protected Overloads Overrides Sub Dispose(ByVal disposing As Boolean)
 'CODEGEN: This procedure is required by the Web Services Designer
 'Do not modify it using the code editor.
 If disposing Then
 If Not (components Is Nothing) Then
 components.Dispose()
 End If
 End If
 MyBase.Dispose(disposing)
 End Sub

#End Region

 <WebMethod()> Public Function FindWebServices()

 ' ** Declare all variables **

 ' HeadHunter1 variables
 Dim myConnectionHH1 As SqlConnection
 Dim myCommandHH1 As SqlCommand
 Dim strWebServicesDirectoryHH1 As String
 Dim strWebServicesURLHH1 As String
 Dim strFilesHH1 As String()
 Dim strFileHH1 As String
 Dim dirStoreFileHH1 As Directory

 ' HeadHunter2 variables
 Dim myConnectionHH2 As SqlConnection
 Dim myCommandHH2 As SqlCommand
 Dim strWebServicesDirectoryHH2 As String
 Dim strWebServicesURLHH2 As String
 Dim strFilesHH2 As String()
 Dim strFileHH2 As String
 Dim dirStoreFileHH2 As Directory

 ' HeadHunter3 variables
 Dim myConnectionHH3 As SqlConnection
 Dim myCommandHH3 As SqlCommand

 91

 Dim strWebServicesDirectoryHH3 As String
 Dim strWebServicesURLHH3 As String
 Dim strFilesHH3 As String()
 Dim strFileHH3 As String
 Dim dirStoreFileHH3 As Directory

 ' Declare the remaining variables
 Dim strFilename As String
 Dim strComponent As String
 Dim strDescription As String
 Dim strThe_Function As String
 Dim strAlgorithm As String
 Dim strComplexity As String
 Dim strDomain As String
 Dim strCollaborators As String
 Dim strEnd2EndDelay As String
 Dim strAvailability As String
 Dim strMobility As String
 Dim strClient As String

 ' ** HeadHunter search and refresh data tables subroutines **
 ' NOTE: For the sake of the experimentation it is important
 ' keep Headhunters query web services separate from
 ' other Headhunters

 ' ** HeadHunter1 search and update meta-data subroutine **

 ' Initialize the search directory and bind URL
 strWebServicesDirectoryHH1 = _
 "C:\Inetpub\wwwroot\rberbeco\UniFrame\WebServices\"
 strWebServicesURLHH1 = _
 "http://149.166.34.252/rberbeco/UniFrame/WebServices/"

 ' Initialize SQL connect
 myConnectionHH1 = _
 New SqlConnection("User
Id=HeadHunter_1;Password=HeadHunter1;database=UniFrame;server=IN-CANC-867126\MP")
 myConnectionHH1.Open()
 myCommandHH1 = New SqlCommand("DELETE FROM Component", myConnectionHH1)
 myCommandHH1.ExecuteNonQuery()
 myConnectionHH1.Close()

 ' Find and process web services
 strFilesHH1 = dirStoreFileHH1.GetFiles(strWebServicesDirectoryHH1, "*.asmx")
 For Each strFileHH1 In strFilesHH1
 strFilename = Mid(strFileHH1, (strWebServicesDirectoryHH1.Length + 1))
 If (InStr(strFilename, "Mobile") > 0) Then
 strMobility = "Yes"
 strWebServicesURLHH1 = _
 "http://162.1.223.223/rberbeco/UniFrame/WebServices/"
 strFilename = String.Concat(Mid(strFilename, 2, (strFilename.Length - 5)), "XML")
 Else
 strMobility = "No"
 End If

 92

 strComponent = String.Concat(strWebServicesURLHH1, strFilename)
 strAvailability = CInt(Int((100 * Rnd()) + 1))
 strEnd2EndDelay = CInt(Int((50 * Rnd()) + 1))
 If (InStr(strFilename, "Bank") > 0) Then
 strDescription = "Provides An Bank Account Management System"
 strThe_Function = "Acts As An Account Server"
 strAlgorithm = "Complete Simple Bank Transfers"
 strComplexity = "O(1)"
 strDomain = "Finance"
 strCollaborators = "AccountClient"
 If (strMobility = "No") Then
 strClient = String.Concat(strWebServicesURLHH1, "GetCustomerAccountsClient.aspx")
 Else
 strClient = String.Concat("http://162.1.223.223/rberbeco/UniFrame/WebServices/",
strFilename)
 End If
 Else
 strDescription = "Provides An Manufacturing Inventory System"
 strThe_Function = "Acts As An Inventory Server"
 strAlgorithm = "Complete Inventory Transfers"
 strComplexity = "O(n)"
 strDomain = "Manufacturing"
 strCollaborators = "ManufacturingClient"
 If (strMobility = "No") Then
 strClient = String.Concat(strWebServicesURLHH1, "GetInventoryAccountsClient.aspx")
 Else
 strClient = String.Concat("http://162.1.223.223/rberbeco/UniFrame/WebServices/",
strFilename)
 End If
 End If
 myConnectionHH1.Open()
 myCommandHH1 = New SqlCommand("INSERT INTO Component " & _
 "(ID,NAME,DESCRIPTION,THE_FUNCTION,ALGORITHM,COMPLEXITY" & _
 ",DOMAIN,COLLABORATORS,CLIENT, END2ENDDELAY, AVAILABILITY,
MOBILITY) VALUES " & _
 "('" & strComponent & _
 "','" & strFilename & _
 "','" & strDescription & _
 "','" & strThe_Function & _
 "','" & strAlgorithm & _
 "','" & strComplexity & _
 "','" & strDomain & _
 "','" & strCollaborators & _
 "','" & strClient & _
 "','" & strEnd2EndDelay & _
 "','" & strAvailability & _
 "','" & strMobility & _
 "')", myConnectionHH1)
 myCommandHH1.ExecuteNonQuery()
 myConnectionHH1.Close()
 Next

 ' ** HeadHunter2 search and update meta-data subroutine **

 ' Initialize the search directory and bind URL
 strWebServicesDirectoryHH2 = _

 93

 "\\IN-CANC-829868\WebServices$\"
 strWebServicesURLHH2 = _
 "http://149.166.34.253/rberbeco/UniFrame/WebServices/"

 ' Initialize SQL connect
 myConnectionHH2 = _
 New SqlConnection("User
Id=HeadHunter_2;Password=HeadHunter2;database=UniFrame;server=IN-CANC-829868\MP")
 myConnectionHH2.Open()
 myCommandHH2 = New SqlCommand("DELETE FROM Component", myConnectionHH2)
 myCommandHH2.ExecuteNonQuery()
 myConnectionHH2.Close()

 ' Find and process web services
 strFilesHH2 = dirStoreFileHH2.GetFiles(strWebServicesDirectoryHH2, "*.asmx")
 For Each strFileHH2 In strFilesHH2
 strFilename = Mid(strFileHH2, (strWebServicesDirectoryHH2.Length + 1))
 If (InStr(strFilename, "Mobile") > 0) Then
 strMobility = "Yes"
 strWebServicesURLHH2 = _
 "http://162.1.223.223/rberbeco/UniFrame/WebServices/"
 strFilename = String.Concat(Mid(strFilename, 2, (strFilename.Length - 5)), "XML")
 Else
 strMobility = "No"
 End If
 strComponent = String.Concat(strWebServicesURLHH2, strFilename)
 strAvailability = CInt(Int((100 * Rnd()) + 1))
 strEnd2EndDelay = CInt(Int((50 * Rnd()) + 1))
 If (InStr(strFilename, "Bank") > 0) Then
 strDescription = "Provides An Bank Account Management System"
 strThe_Function = "Acts As An Account Server"
 strAlgorithm = "Complete Simple Bank Transfers"
 strComplexity = "O(1)"
 strDomain = "Finance"
 strCollaborators = "AccountClient"
 If (strMobility = "No") Then
 strClient = String.Concat(strWebServicesURLHH2, "GetCustomerAccountsClient.aspx")
 Else
 strClient = String.Concat("http://162.1.223.223/rberbeco/UniFrame/WebServices/",
strFilename)
 End If
 Else
 strDescription = "Provides An Manufacturing Inventory System"
 strThe_Function = "Acts As An Inventory Server"
 strAlgorithm = "Complete Inventory Transfers"
 strComplexity = "O(n)"
 strDomain = "Manufacturing"
 strCollaborators = "ManufacturingClient"
 If (strMobility = "No") Then
 strClient = String.Concat(strWebServicesURLHH1, "GetInventoryAccountsClient.aspx")
 Else
 strClient = String.Concat("http://162.1.223.223/rberbeco/UniFrame/WebServices/",
strFilename)
 End If
 End If
 myConnectionHH2.Open()

 94

 myCommandHH2 = New SqlCommand("INSERT INTO Component " & _
 "(ID,NAME,DESCRIPTION,THE_FUNCTION,ALGORITHM,COMPLEXITY" & _
 ",DOMAIN,COLLABORATORS,CLIENT, END2ENDDELAY, AVAILABILITY,
MOBILITY) VALUES " & _
 "('" & strComponent & _
 "','" & strFilename & _
 "','" & strDescription & _
 "','" & strThe_Function & _
 "','" & strAlgorithm & _
 "','" & strComplexity & _
 "','" & strDomain & _
 "','" & strCollaborators & _
 "','" & strClient & _
 "','" & strEnd2EndDelay & _
 "','" & strAvailability & _
 "','" & strMobility & _
 "')", myConnectionHH2)
 myCommandHH2.ExecuteNonQuery()
 myConnectionHH2.Close()
 Next

 ' ** HeadHunter3 search and update meta-data subroutine **

 ' Initialize the search directory and bind URL
 strWebServicesDirectoryHH3 = _
 "C:\Inetpub\wwwroot\rberbeco\UniFrame\WebServices\Mobile"
 strWebServicesURLHH3 = _
 "http://149.166.34.252/rberbeco/UniFrame/WebServices/Mobile"

 ' Initialize SQL connect
 myConnectionHH3 = _
 New SqlConnection("User
Id=HeadHunter_3;Password=HeadHunter3;database=UniFrame;server=IN-CANC-829868\MP2")
 myConnectionHH3.Open()
 myCommandHH3 = New SqlCommand("DELETE FROM Component", myConnectionHH3)
 myCommandHH3.ExecuteNonQuery()
 myConnectionHH3.Close()

 ' Find and process web services
 strFilesHH3 = dirStoreFileHH3.GetFiles(strWebServicesDirectoryHH3, "*.asmx")
 For Each strFileHH3 In strFilesHH3
 strFilename = Mid(strFileHH3, (strWebServicesDirectoryHH3.Length + 1))
 If (InStr(strFilename, "Mobile") > 0) Then
 strMobility = "Yes"
 strWebServicesURLHH3 = _
 "http://162.1.223.223/rberbeco/UniFrame/WebServices/"
 strFilename = String.Concat(Mid(strFilename, 2, (strFilename.Length - 5)), "XML")
 Else
 strMobility = "No"
 End If
 strComponent = String.Concat(strWebServicesURLHH3, strFilename)
 strAvailability = CInt(Int((100 * Rnd()) + 1))
 strEnd2EndDelay = CInt(Int((50 * Rnd()) + 1))
 If (InStr(strFilename, "Bank") > 0) Then
 strDescription = "Provides An Bank Account Management System"

 95

 strThe_Function = "Acts As An Account Server"
 strAlgorithm = "Complete Simple Bank Transfers"
 strComplexity = "O(1)"
 strDomain = "Finance"
 strCollaborators = "AccountClient"
 If (strMobility = "No") Then
 strClient = String.Concat(strWebServicesURLHH1, "GetCustomerAccountsClient.aspx")
 Else
 strClient = String.Concat("http://162.1.223.223/rberbeco/UniFrame/WebServices/",
strFilename)
 End If
 Else
 strDescription = "Provides An Manufacturing Inventory System"
 strThe_Function = "Acts As An Inventory Server"
 strAlgorithm = "Complete Inventory Transfers"
 strComplexity = "O(n)"
 strDomain = "Manufacturing"
 strCollaborators = "ManufacturingClient"
 If (strMobility = "No") Then
 strClient = String.Concat(strWebServicesURLHH1, "GetInventoryAccountsClient.aspx")
 Else
 strClient = String.Concat("http://162.1.223.223/rberbeco/UniFrame/WebServices/",
strFilename)
 End If
 End If
 myConnectionHH3.Open()
 myCommandHH3 = New SqlCommand("INSERT INTO Component " & _
 "(ID,NAME,DESCRIPTION,THE_FUNCTION,ALGORITHM,COMPLEXITY" & _
 ",DOMAIN,COLLABORATORS,CLIENT, END2ENDDELAY, AVAILABILITY,
MOBILITY) VALUES " & _
 "('" & strComponent & _
 "','" & strFilename & _
 "','" & strDescription & _
 "','" & strThe_Function & _
 "','" & strAlgorithm & _
 "','" & strComplexity & _
 "','" & strDomain & _
 "','" & strCollaborators & _
 "','" & strClient & _
 "','" & strEnd2EndDelay & _
 "','" & strAvailability & _
 "','" & strMobility & _
 "')", myConnectionHH3)
 myCommandHH3.ExecuteNonQuery()
 myConnectionHH3.Close()
 Next
 End Function
End Class

ComponentList.aspx

<%@ Import Namespace="System.Data.SqlClient" %>
<%@ Import Namespace="System.Data" %>
<%@ Import Namespace="System.IO" %>
<%@ Import Namespace="System" %>

 96

<%@ Import Namespace="UniFrame.Headhunters" %>
<%@ Page Language="vb" %>
<!--
Filename: ComponentList.aspx
Created Date: 3/28/03
Author: Bob Berbeco
Description: This web page takes user input from UniFrameQuery form
 and processes it for component searching via Head Hunters
 Results are displayed via data grid
Modifications: 4/13/03 Bob Berbeco - added comments
-->
<HTML>
 <HEAD>
 <title>URDS Search Results</title>
 <meta name="GENERATOR" content="Microsoft Visual Studio.NET 7.0">
 <meta name="CODE_LANGUAGE" content="Visual Basic 7.0">
 <meta name="vs_defaultClientScript" content="JavaScript">
 <meta name="vs_targetSchema"
content="http://schemas.microsoft.com/intellisense/ie5">
 <LINK href="Styles.css" type="text/css" rel="stylesheet">
 <script runat="server">

 'Page load subroutine
 Sub Page_Load(sender As Object, e As EventArgs)
 If Not Page.IsPostBack Then
 BindGrid()
 End If
 End Sub

 'BindGrid subroutine for data grid configuration
 Private Sub BindGrid()

 'Declare variables used for head hunter query
 Dim domain as String
 Dim componentName as String
 Dim componentDescription as String
 Dim functionNames as String
 Dim algorithms as String
 Dim complexity as String
 Dim technology as String
 Dim availabilityValue as string
 Dim end2endDelayValue as string
 Dim mobility as string

 'Create HH instances of connection and command object for database
connections
 Dim myConnectionHH1 As SqlConnection = _
 New SqlConnection("User
Id=HeadHunter_1;Password=HeadHunter1;database=UniFrame;server=IN-CANC-867126\MP")
 Dim myCommandHH1 As SqlCommand = _
 New SqlCommand("sp_search_for_components", myConnectionHH1)
 Dim myConnectionHH2 As SqlConnection = _
 New SqlConnection("User
Id=HeadHunter_2;Password=HeadHunter2;database=UniFrame;server=IN-CANC-829868\MP")
 Dim myCommandHH2 As SqlCommand = _
 New SqlCommand("sp_search_for_components", myConnectionHH2)

 97

 Dim myConnectionHH3 As SqlConnection = _
 New SqlConnection("User
Id=HeadHunter_3;Password=HeadHunter3;database=UniFrame;server=IN-CANC-829868\MP2")
 Dim myCommandHH3 As SqlCommand = _
 New SqlCommand("sp_search_for_components", myConnectionHH3)

 'Mark the HH commands as a stored procedures since the
 'UniFrame database stored procedure will be invoked
 myCommandHH1.CommandType = CommandType.StoredProcedure
 myCommandHH2.CommandType = CommandType.StoredProcedure
 myCommandHH3.CommandType = CommandType.StoredProcedure

 '**Add all parameters to be processed by HH stored procedures**

 'Domain
 if (Request.Form("domain") = "")
 domainLabel.Text = "Unselected"
 else
 domainLabel.Text = Request.Form("domain")
 end if
 domain = "%" & Request.Form("domain") & "%"
 myCommandHH1.Parameters.Add(New SqlClient.SqlParameter("@domain", _
 System.Data.SqlDbType.Varchar, 30)).Value = domain
 myCommandHH2.Parameters.Add(New SqlClient.SqlParameter("@domain", _
 System.Data.SqlDbType.Varchar, 30)).Value = domain
 myCommandHH3.Parameters.Add(New SqlClient.SqlParameter("@domain", _
 System.Data.SqlDbType.Varchar, 30)).Value = domain

 'componentName
 if (Request.Form("componentName") = "")
 componentNameLabel.Text = "Unselected"
 else
 componentNameLabel.Text = Request.Form("componentName")
 end if
 componentName = "%" & Request.Form("componentName") & "%"
 myCommandHH1.Parameters.Add(New
SqlClient.SqlParameter("@componentName", _
 System.Data.SqlDbType.Varchar, 100)).Value = componentName
 myCommandHH2.Parameters.Add(New
SqlClient.SqlParameter("@componentName", _
 System.Data.SqlDbType.Varchar, 100)).Value = componentName
 myCommandHH3.Parameters.Add(New
SqlClient.SqlParameter("@componentName", _
 System.Data.SqlDbType.Varchar, 100)).Value = componentName

 'componentDescription
 if (Request.Form("componentDescription") = "")
 componentDescriptionLabel.Text = "Unselected"
 else
 componentDescriptionLabel.Text =
Request.Form("componentDescription")
 end if
 componentDescription = "%" & Request.Form("componentDescription") & "%"
 myCommandHH1.Parameters.Add(New
SqlClient.SqlParameter("@componentDescription", _

 98

 System.Data.SqlDbType.Varchar, 1000)).Value = componentDescription
 myCommandHH2.Parameters.Add(New
SqlClient.SqlParameter("@componentDescription", _
 System.Data.SqlDbType.Varchar, 1000)).Value = componentDescription
 myCommandHH3.Parameters.Add(New
SqlClient.SqlParameter("@componentDescription", _
 System.Data.SqlDbType.Varchar, 1000)).Value = componentDescription

 'functionNames
 if (Request.Form("functionNames") = "")
 functionNamesLabel.Text = "Unselected"
 else
 functionNamesLabel.Text = Request.Form("functionNames")
 end if
 functionNames = "%" & Request.Form("functionNames") & "%"
 myCommandHH1.Parameters.Add(New
SqlClient.SqlParameter("@functionNames", _
 System.Data.SqlDbType.Varchar, 500)).Value = functionNames
 myCommandHH2.Parameters.Add(New
SqlClient.SqlParameter("@functionNames", _
 System.Data.SqlDbType.Varchar, 500)).Value = functionNames
 myCommandHH3.Parameters.Add(New
SqlClient.SqlParameter("@functionNames", _
 System.Data.SqlDbType.Varchar, 500)).Value = functionNames

 'algorithms
 if (Request.Form("algorithms") = "")
 algorithmsLabel.Text = "Unselected"
 else
 algorithmsLabel.Text = Request.Form("algorithms")
 end if
 algorithms = "%" & Request.Form("algorithms") & "%"
 myCommandHH1.Parameters.Add(New
SqlClient.SqlParameter("@algorithms", _
 System.Data.SqlDbType.Varchar, 200)).Value = algorithms
 myCommandHH2.Parameters.Add(New
SqlClient.SqlParameter("@algorithms", _
 System.Data.SqlDbType.Varchar, 200)).Value = algorithms
 myCommandHH3.Parameters.Add(New
SqlClient.SqlParameter("@algorithms", _
 System.Data.SqlDbType.Varchar, 200)).Value = algorithms

 'complexity
 if (Request.Form("complexity") = "")
 complexityLabel.Text = "Unselected"
 else
 complexityLabel.Text = Request.Form("complexity")
 end if
 complexity = "%" & Request.Form("complexity") & "%"
 myCommandHH1.Parameters.Add(New
SqlClient.SqlParameter("@complexity", _
 System.Data.SqlDbType.Varchar, 30)).Value = complexity
 myCommandHH2.Parameters.Add(New
SqlClient.SqlParameter("@complexity", _
 System.Data.SqlDbType.Varchar, 30)).Value = complexity
 myCommandHH3.Parameters.Add(New

 99

SqlClient.SqlParameter("@complexity", _
 System.Data.SqlDbType.Varchar, 30)).Value = complexity

 'technology
 if (Request.Form("technology") = "")
 technologyLabel.Text = "Unselected"
 else
 technologyLabel.Text = Request.Form("technology")
 end if
 technology = "%" & Request.Form("technology") & "%"
 myCommandHH1.Parameters.Add(New
SqlClient.SqlParameter("@technology", _
 System.Data.SqlDbType.Varchar, 30)).Value = technology
 myCommandHH2.Parameters.Add(New
SqlClient.SqlParameter("@technology", _
 System.Data.SqlDbType.Varchar, 30)).Value = technology
 myCommandHH3.Parameters.Add(New
SqlClient.SqlParameter("@technology", _
 System.Data.SqlDbType.Varchar, 30)).Value = technology

 'availabilityValue
 if (Request.Form("availabilityValue") = "")
 availabilityLabel.Text = "Unselected"
 else
 availabilityLabel.Text = Request.Form("availabilityValue")
 end if
 availabilityValue = "%" & Request.Form("availabilityValue") & "%"
 myCommandHH1.Parameters.Add(New
SqlClient.SqlParameter("@availabilityValue", _
 System.Data.SqlDbType.Varchar, 30)).Value = availabilityValue
 myCommandHH2.Parameters.Add(New
SqlClient.SqlParameter("@availabilityValue", _
 System.Data.SqlDbType.Varchar, 30)).Value = availabilityValue
 myCommandHH3.Parameters.Add(New
SqlClient.SqlParameter("@availabilityValue", _
 System.Data.SqlDbType.Varchar, 30)).Value = availabilityValue

 'end2endDelayValue
 if (Request.Form("end2endDelayValue") = "")
 end2endDelayValueLabel.Text = "Unselected"
 else
 end2endDelayValueLabel.Text =
Request.Form("end2endDelayValue")
 end if
 end2endDelayValue = "%" & Request.Form("end2endDelayValue") & "%"
 myCommandHH1.Parameters.Add(New
SqlClient.SqlParameter("@end2endDelayValue", _
 System.Data.SqlDbType.Varchar, 30)).Value = end2endDelayValue
 myCommandHH2.Parameters.Add(New
SqlClient.SqlParameter("@end2endDelayValue", _
 System.Data.SqlDbType.Varchar, 30)).Value = end2endDelayValue
 myCommandHH3.Parameters.Add(New
SqlClient.SqlParameter("@end2endDelayValue", _
 System.Data.SqlDbType.Varchar, 30)).Value = end2endDelayValue

 'mobility

 100

 if (Request.Form("mobility") = "")
 mobilityLabel.Text = "Unselected"
 else
 mobilityLabel.Text = Request.Form("mobility")
 end if
 mobility = "%" & Request.Form("mobility") & "%"
 myCommandHH1.Parameters.Add(New SqlClient.SqlParameter("@mobility", _
 System.Data.SqlDbType.Varchar, 5)).Value = mobility
 myCommandHH2.Parameters.Add(New SqlClient.SqlParameter("@mobility", _
 System.Data.SqlDbType.Varchar, 5)).Value = mobility
 myCommandHH3.Parameters.Add(New SqlClient.SqlParameter("@mobility", _
 System.Data.SqlDbType.Varchar, 5)).Value = mobility

 'Execute all HH stored procedures with above data,
 'add results to results data grid objects
 Try

 'Open all HH meta-data connections, execute stored procedures
 myConnectionHH1.Open()
 DG_Components1.DataSource =
myCommandHH1.ExecuteReader(CommandBehavior.CloseConnection)
 DG_Components1.DataBind()
 myConnectionHH2.Open()
 DG_Components2.DataSource =
myCommandHH2.ExecuteReader(CommandBehavior.CloseConnection)
 DG_Components2.DataBind()
 myConnectionHH3.Open()
 DG_Components3.DataSource =
myCommandHH3.ExecuteReader(CommandBehavior.CloseConnection)

 DG_Components3.DataBind()

 'Catch any result grids that have no results to notify user
 if (DG_Components1.Items.Count = 0) then
 DataGridIsNullLabel1.Text = "Head Hunters have completed
their individual search routines and could not discover web services with requested parameters on location
#1."
 end if
 if (DG_Components2.Items.Count = 0) then
 DataGridIsNullLabel2.Text = "Head Hunters have completed
their individual search routines and could not discover web services with requested parameters on location
#2."
 end if
 if (DG_Components3.Items.Count = 0) then
 DataGridIsNullLabel3.Text = "Head Hunters have completed
their individual search routines and could not discover web services with requested parameters on location
#3."
 end if

 'Catch general SQL error
 Catch SQLexc As SqlException
 Response.Write("Error occured while Generating Data. Error is " &
SQLexc.ToString())
 End Try
 End Sub
 </script>

 101

 </HEAD>
 <body>
 <!-- Output HTML all HH data grid results -->
 <h3 align="center">UniFrame Search Criteria</h3>
 <p><i>Comments:

 This web page takes user input from UniFrameQuery.htm and
is processed by Headhunters
 to find the requested components.</i></p>

 <!-- Show the user selected parameters -->
 <table cellSpacing="1" cellPadding="5" border="1" align="center" width="75%"
bgcolor="#ffffe5">
 <tr>
 <td>Component Details:

 Domain =
 <asp:label id="domainLabel" runat="server"
Font-Underline="true"></asp:label>

 Component Name =
 <asp:label id="componentNameLabel"
runat="server" Font-Underline="true"></asp:label>

 Component Description =
 <asp:label id="componentDescriptionLabel"
runat="server" Font-Underline="true"></asp:label>

 Function Names =
 <asp:label id="functionNamesLabel"
runat="server" Font-Underline="true"></asp:label>
 </td>
 <td>Function Attributes:

 Desired Algorithms =
 <asp:label id="algorithmsLabel"
runat="server" Font-Underline="true"></asp:label>

 Desired Complexity =
 <asp:label id="complexityLabel"
runat="server" Font-Underline="true"></asp:label>

 Technology =
 <asp:label id="technologyLabel"
runat="server" Font-Underline="true"></asp:label>
 </td>
 </tr>
 <tr>
 <td width="365">Auxillary Attributes:

 Mobility =
 <asp:label id="mobilityLabel"
runat="server" Font-Underline="true"></asp:label>
 </td>

 102

 <td>QOS Metrics:

 End-to-end Delay =
 <asp:Label id="end2endDelayValueLabel"
runat="server" Font-Underline="true"></asp:Label>

 Availability =
 <asp:Label id="availabilityLabel"
runat="server" Font-Underline="true"></asp:Label>
 </td>
 </tr>
 </table>

 <!-- Display results -->
 <h3 align="center">URDS Search Results</h3>

 <!-- Display all laptop components found by HHs -->
 <h4 align="center">Component Search Location #1 (Laptop)</h4>
 <form id="Form1" method="post" runat="server">
 <asp:DataGrid ID="DG_Components1" AutoGenerateColumns="False"
Width="99%" BorderColor="#000000" Runat="server">
 <HeaderStyle Font-Size="13px" Font-Names="Verdana" Font-
Bold="True" BackColor="#003366"></HeaderStyle>
 <ItemStyle Font-Size="13px" Font-Names="verdana"
BackColor="Beige"></ItemStyle>
 <Columns>
 <asp:TemplateColumn HeaderText="Web Service Access
Point" HeaderStyle-Font-Bold="true" HeaderStyle-ForeColor="#ffffff">
 <ItemTemplate>
 <asp:Label id=Label1 Runat="server" Font-
Size="10px" Text='<%# DataBinder.Eval(Container.DataItem, "BINDING") %>'>
 </asp:Label>
 </ItemTemplate>
 </asp:TemplateColumn>
 <asp:TemplateColumn HeaderText="Service Client"
HeaderStyle-Font-Bold="true" HeaderStyle-ForeColor="#ffffff">
 <ItemTemplate>
 <asp:Label Runat="server" Font-
Size="10px" Text='<%# DataBinder.Eval(Container.DataItem, "PROXY") %>' ID="Label5" />
 </ItemTemplate>
 </asp:TemplateColumn>
 <asp:TemplateColumn HeaderText="Name" HeaderStyle-
Font-Bold="true" HeaderStyle-ForeColor="#ffffff">
 <ItemTemplate>
 <asp:Label Runat="server" Font-
Size="10px" Text='<%# DataBinder.Eval(Container.DataItem, "NAME") %>' ID="Label2" />
 </ItemTemplate>
 </asp:TemplateColumn>
 <asp:TemplateColumn HeaderText="Description"
HeaderStyle-Font-Bold="true" HeaderStyle-ForeColor="#ffffff">
 <ItemTemplate>
 <asp:Label Runat="server" Font-
Size="10px" Text='<%# DataBinder.Eval(Container.DataItem, "DESCRIPTION") %>' ID="Label3" />
 </ItemTemplate>
 </asp:TemplateColumn>

 103

 <asp:TemplateColumn HeaderText="tModel Key"
HeaderStyle-Font-Bold="true" HeaderStyle-ForeColor="#ffffff">
 <ItemTemplate>
 <asp:Label Runat="server" Font-
Size="10px" Text='<%# DataBinder.Eval(Container.DataItem, "PID") %>' ID="Label4" />
 </ItemTemplate>
 </asp:TemplateColumn>
 <asp:TemplateColumn HeaderText="End-to-end Delay"
HeaderStyle-Font-Bold="true" HeaderStyle-ForeColor="#ffffff">
 <ItemTemplate>
 <asp:Label Runat="server" Font-
Size="10px" Text='<%# DataBinder.Eval(Container.DataItem, "END2ENDDELAY") %>' ID="Label6" />
 </ItemTemplate>
 </asp:TemplateColumn>
 <asp:TemplateColumn HeaderText="Availability"
HeaderStyle-Font-Bold="true" HeaderStyle-ForeColor="#ffffff">
 <ItemTemplate>
 <asp:Label Runat="server" Font-
Size="10px" Text='<%# DataBinder.Eval(Container.DataItem, "AVAILABILITY") %>' ID="Label7" />
 </ItemTemplate>
 </asp:TemplateColumn>
 <asp:TemplateColumn HeaderText="Mobile?" HeaderStyle-
Font-Bold="true" HeaderStyle-ForeColor="#ffffff">
 <ItemTemplate>
 <asp:Label Runat="server" Font-
Size="10px" Text='<%# DataBinder.Eval(Container.DataItem, "MOBILITY") %>' ID="Label8" />
 </ItemTemplate>
 </asp:TemplateColumn>
 </Columns>
 </asp:DataGrid>

 <!-- Catch no results to notify user -->
 <p align="center">
 <asp:label id="DataGridIsNullLabel1" runat="server" Font-
Bold="true"></asp:label>
 </p>

 <!-- Display all desktop components found by HHs -->
 <h4 align="center">Component Search Location #2 (Desktop)</h4>
 <asp:DataGrid ID="DG_Components2" AutoGenerateColumns="False"
Width="99%" BorderColor="#000000" Runat="server">
 <HeaderStyle Font-Size="13px" Font-Names="Verdana" Font-
Bold="True" BackColor="#003366"></HeaderStyle>
 <ItemStyle Font-Size="13px" Font-Names="verdana"
BackColor="Beige"></ItemStyle>
 <Columns>
 <asp:TemplateColumn HeaderText="Web Service Access
Point" HeaderStyle-Font-Bold="true" HeaderStyle-ForeColor="#ffffff">
 <ItemTemplate>
 <asp:Label id="Label9" Runat="server"
Font-Size="10px" Text='<%# DataBinder.Eval(Container.DataItem, "BINDING") %>'>
 </asp:Label>
 </ItemTemplate>
 </asp:TemplateColumn>
 <asp:TemplateColumn HeaderText="Service Client"
HeaderStyle-Font-Bold="true" HeaderStyle-ForeColor="#ffffff">

 104

 <ItemTemplate>
 <asp:Label Runat="server" Font-
Size="10px" Text='<%# DataBinder.Eval(Container.DataItem, "PROXY") %>' ID="Label10" />
 </ItemTemplate>
 </asp:TemplateColumn>
 <asp:TemplateColumn HeaderText="Name" HeaderStyle-
Font-Bold="true" HeaderStyle-ForeColor="#ffffff">
 <ItemTemplate>
 <asp:Label Runat="server" Font-
Size="10px" Text='<%# DataBinder.Eval(Container.DataItem, "NAME") %>' ID="Label11" />
 </ItemTemplate>
 </asp:TemplateColumn>
 <asp:TemplateColumn HeaderText="Description"
HeaderStyle-Font-Bold="true" HeaderStyle-ForeColor="#ffffff">
 <ItemTemplate>
 <asp:Label Runat="server" Font-
Size="10px" Text='<%# DataBinder.Eval(Container.DataItem, "DESCRIPTION") %>' ID="Label12" />
 </ItemTemplate>
 </asp:TemplateColumn>
 <asp:TemplateColumn HeaderText="tModel Key"
HeaderStyle-Font-Bold="true" HeaderStyle-ForeColor="#ffffff">
 <ItemTemplate>
 <asp:Label Runat="server" Font-
Size="10px" Text='<%# DataBinder.Eval(Container.DataItem, "PID") %>' ID="Label13" />
 </ItemTemplate>
 </asp:TemplateColumn>
 <asp:TemplateColumn HeaderText="End-to-end Delay"
HeaderStyle-Font-Bold="true" HeaderStyle-ForeColor="#ffffff">
 <ItemTemplate>
 <asp:Label Runat="server" Font-
Size="10px" Text='<%# DataBinder.Eval(Container.DataItem, "END2ENDDELAY") %>' ID="Label14"
/>
 </ItemTemplate>
 </asp:TemplateColumn>
 <asp:TemplateColumn HeaderText="Availability"
HeaderStyle-Font-Bold="true" HeaderStyle-ForeColor="#ffffff">
 <ItemTemplate>
 <asp:Label Runat="server" Font-
Size="10px" Text='<%# DataBinder.Eval(Container.DataItem, "AVAILABILITY") %>' ID="Label15" />
 </ItemTemplate>
 </asp:TemplateColumn>
 <asp:TemplateColumn HeaderText="Mobile?" HeaderStyle-
Font-Bold="true" HeaderStyle-ForeColor="#ffffff">
 <ItemTemplate>
 <asp:Label Runat="server" Font-
Size="10px" Text='<%# DataBinder.Eval(Container.DataItem, "MOBILITY") %>' ID="Label16" />
 </ItemTemplate>
 </asp:TemplateColumn>
 </Columns>
 </asp:DataGrid>

 <!-- Catch no results to notify user -->
 <p align="center">
 <asp:label id="DataGridIsNullLabel2" runat="server" Font-
Bold="true"></asp:label>
 </p>

 105

 <!-- Display all embedded components found by HHs -->
 <h4 align="center">Component Search Location #3 (Embedded Device)</h4>
 <asp:DataGrid ID="DG_Components3" AutoGenerateColumns="False"
Width="99%" BorderColor="#000000" Runat="server">
 <HeaderStyle Font-Size="13px" Font-Names="Verdana" Font-
Bold="True" BackColor="#003366"></HeaderStyle>
 <ItemStyle Font-Size="13px" Font-Names="verdana"
BackColor="Beige"></ItemStyle>
 <Columns>
 <asp:TemplateColumn HeaderText="Web Service Access
Point" HeaderStyle-Font-Bold="true" HeaderStyle-ForeColor="#ffffff">
 <ItemTemplate>
 <asp:Label id="Label18" Runat="server"
Font-Size="10px" Text='<%# DataBinder.Eval(Container.DataItem, "BINDING") %>'>
 </asp:Label>
 </ItemTemplate>
 </asp:TemplateColumn>
 <asp:TemplateColumn HeaderText="Service Client"
HeaderStyle-Font-Bold="true" HeaderStyle-ForeColor="#ffffff">
 <ItemTemplate>
 <asp:Label Runat="server" Font-
Size="10px" Text='<%# DataBinder.Eval(Container.DataItem, "PROXY") %>' ID="Label19" />
 </ItemTemplate>
 </asp:TemplateColumn>
 <asp:TemplateColumn HeaderText="Name" HeaderStyle-
Font-Bold="true" HeaderStyle-ForeColor="#ffffff">
 <ItemTemplate>
 <asp:Label Runat="server" Font-
Size="10px" Text='<%# DataBinder.Eval(Container.DataItem, "NAME") %>' ID="Label20" />
 </ItemTemplate>
 </asp:TemplateColumn>
 <asp:TemplateColumn HeaderText="Description"
HeaderStyle-Font-Bold="true" HeaderStyle-ForeColor="#ffffff">
 <ItemTemplate>
 <asp:Label Runat="server" Font-
Size="10px" Text='<%# DataBinder.Eval(Container.DataItem, "DESCRIPTION") %>' ID="Label21" />
 </ItemTemplate>
 </asp:TemplateColumn>
 <asp:TemplateColumn HeaderText="tModel Key"
HeaderStyle-Font-Bold="true" HeaderStyle-ForeColor="#ffffff">
 <ItemTemplate>
 <asp:Label Runat="server" Font-
Size="10px" Text='<%# DataBinder.Eval(Container.DataItem, "PID") %>' ID="Label22" />
 </ItemTemplate>
 </asp:TemplateColumn>
 <asp:TemplateColumn HeaderText="End-to-end Delay"
HeaderStyle-Font-Bold="true" HeaderStyle-ForeColor="#ffffff">
 <ItemTemplate>
 <asp:Label Runat="server" Font-
Size="10px" Text='<%# DataBinder.Eval(Container.DataItem, "END2ENDDELAY") %>' ID="Label23"
/>
 </ItemTemplate>
 </asp:TemplateColumn>
 <asp:TemplateColumn HeaderText="Availability"
HeaderStyle-Font-Bold="true" HeaderStyle-ForeColor="#ffffff">

 106

 <ItemTemplate>
 <asp:Label Runat="server" Font-
Size="10px" Text='<%# DataBinder.Eval(Container.DataItem, "AVAILABILITY") %>' ID="Label24" />
 </ItemTemplate>
 </asp:TemplateColumn>
 <asp:TemplateColumn HeaderText="Mobile?" HeaderStyle-
Font-Bold="true" HeaderStyle-ForeColor="#ffffff">
 <ItemTemplate>
 <asp:Label Runat="server" Font-
Size="10px" Text='<%# DataBinder.Eval(Container.DataItem, "MOBILITY") %>' ID="Label25" />
 </ItemTemplate>
 </asp:TemplateColumn>
 </Columns>
 </asp:DataGrid>

 <!-- Catch no results to notify user -->
 <p align="center">
 <asp:label id="DataGridIsNullLabel3" runat="server" Font-
Bold="true"></asp:label>
 </p>
 </form>
 </body>
</HTML>

Global.asax.vb

Imports System.Web
Imports System.Web.SessionState

Public Class Global
 Inherits System.Web.HttpApplication

#Region " Component Designer Generated Code "

 Public Sub New()
 MyBase.New()

 'This call is required by the Component Designer.
 InitializeComponent()

 'Add any initialization after the InitializeComponent() call

 End Sub

 'Required by the Component Designer
 Private components As System.ComponentModel.IContainer

 'NOTE: The following procedure is required by the Component Designer
 'It can be modified using the Component Designer.
 'Do not modify it using the code editor.
 <System.Diagnostics.DebuggerStepThrough()> Private Sub InitializeComponent()
 components = New System.ComponentModel.Container()
 End Sub

#End Region

 107

 Sub Application_Start(ByVal sender As Object, ByVal e As EventArgs)
 ' Fires when the application is started
 End Sub

 Sub Session_Start(ByVal sender As Object, ByVal e As EventArgs)
 ' Fires when the session is started
 End Sub

 Sub Application_BeginRequest(ByVal sender As Object, ByVal e As EventArgs)
 ' Fires at the beginning of each request
 End Sub

 Sub Application_AuthenticateRequest(ByVal sender As Object, ByVal e As EventArgs)
 ' Fires upon attempting to authenticate the use
 End Sub

 Sub Application_Error(ByVal sender As Object, ByVal e As EventArgs)
 ' Fires when an error occurs
 End Sub

 Sub Session_End(ByVal sender As Object, ByVal e As EventArgs)
 ' Fires when the session ends
 End Sub

 Sub Application_End(ByVal sender As Object, ByVal e As EventArgs)
 ' Fires when the application ends
 End Sub

End Class

GetCustomerAccountsClient.aspx

<%@ Page Language="vb" %>
<%@ Import Namespace="System.Data" %>
<%@ Import Namespace="System.Data.SqlClient" %>
<!--
Filename: GetCustomerAccountsClient.aspx
Created Date: 3/28/03
Author: Bob Berbeco
Description: This web page consumes the GetCustomerAccounts detail function
 in the BankDataSvc web service using a web service proxy.
 Results are displayed and editable.
Modifications: 4/13/03 Bob Berbeco - added comments
-->
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
 <HEAD>
 <LINK href="..\Styles.css" type="text/css" rel="stylesheet">
 <script runat="server">

 'Page load subroutine
 Public Sub Page_Load(Source As Object, E As EventArgs)
 If Not Page.IsPostBack Then
 BindData()

 108

 End If
 End Sub

 'BindGrid subroutine for data grid configuration
 'Use the web service proxy for retrieval
 Public Sub BindData()

 'Declaration format: Dim variablename As New Namespace.Class
 Dim wsProxy As New GetCustomerAccountsClient.BankDataService()
 customerAccts.DataSource = wsProxy.GetCustomerAccounts()
 customerAccts.DataBind()
 End Sub

 'Data grid edit subroutines - get item index and change data grid display
 Public Sub DataGrid1_Edit(ByVal Source As Object, _
 ByVal E As DataGridCommandEventArgs)
 customerAccts.EditItemIndex = E.Item.ItemIndex
 BindData()
 End Sub

 'Data grid cancel subroutines - change data grid display back to original
 Public Sub DataGrid1_Cancel(ByVal Source As Object, _
 ByVal E As DataGridCommandEventArgs)
 customerAccts.EditItemIndex = -1
 BindData()
 End Sub

 'Data grid update subroutines - update the data grid output into database
 Public Sub DataGrid1_Update(ByVal Source As Object, _
 ByVal E As DataGridCommandEventArgs)
 Dim myConnection As SqlConnection
 Dim myCommand As SqlCommand

 'Initiatialize all the updateable text for the update query
 Dim txtBalance As TextBox = E.Item.Cells(4).Controls(0)
 Dim strUpdateStmt As String

 'Update query
 strUpdateStmt = "UPDATE Customer_Accounts SET " & _
 "Balance = '" & txtBalance.Text & "' " & _
 "WHERE CustomerID = '" & E.Item.Cells(1).Text & "'" & _
 "AND AccountNumber ='" & E.Item.Cells(2).Text & "'"

 'Create connection to database and update table
 myConnection = New SqlConnection(_
 "User Id=HeadHunter_1;Password=HeadHunter1;database=bank;server=IN-
CANC-867126\MP")
 myCommand = New SqlCommand(strUpdateStmt, myConnection)
 myConnection.Open()
 myCommand.ExecuteNonQuery()
 customerAccts.EditItemIndex = -1
 BindData()
 End Sub
 </script>
 </HEAD>
 <body>

 109

 <p align="left">
 </p>
 <H3>Get Customer Accounts Client</H3>
 <p><i>Comments:
Client consumes the GetCustomerAccounts detail
function in the
 BankDataSvc web service using a web service proxy.
Results are
displayed and editable.</i></p>
 <form id="Form1" method="post" runat="server">
 <div id="queryDiv1"><asp:datagrid id="customerAccts" runat="server"
DataKeyField="CustomerID" PageSize="5" AutoGenerateColumns="False" Height="50px"
Width="100%" DataMember="CustomerInfos" CellPadding="2" OnEditCommand="DataGrid1_Edit"
OnCancelCommand="DataGrid1_Cancel" OnUpdateCommand="DataGrid1_Update">
 <HeaderStyle Font-Names="Verdana" Font-Bold="True"
Height="10px" ForeColor="White" BackColor="#003366"></HeaderStyle>
 <ItemStyle Font-Size="13px" Font-Names="verdana"
BackColor="Beige"></ItemStyle>
 <Columns>
 <asp:EditCommandColumn
ButtonType="Linkbutton" UpdateText="Update" CancelText="Cancel" EditText="Edit" HeaderStyle-
Font-Bold="true" HeaderStyle-ForeColor="#ffffff"></asp:EditCommandColumn>
 <asp:BoundColumn DataField="CustomerID"
ReadOnly="True" HeaderText="Account #" HeaderStyle-Font-Bold="true" HeaderStyle-
ForeColor="#ffffff"></asp:BoundColumn>
 <asp:BoundColumn DataField="AccountNumber"
ReadOnly="True" HeaderText="Account Number" HeaderStyle-Font-Bold="true" HeaderStyle-
ForeColor="#ffffff"></asp:BoundColumn>
 <asp:BoundColumn DataField="AccountType"
ReadOnly="True" HeaderText="Account Type" HeaderStyle-Font-Bold="true" HeaderStyle-
ForeColor="#ffffff"></asp:BoundColumn>
 <asp:BoundColumn DataField="Balance"
HeaderText="Balance" HeaderStyle-Font-Bold="true" HeaderStyle-
ForeColor="#ffffff"></asp:BoundColumn>
 <asp:BoundColumn
DataField="Customer_Firstname" ReadOnly="True" HeaderText="Account Holder Firstname"
HeaderStyle-Font-Bold="true" HeaderStyle-ForeColor="#ffffff"></asp:BoundColumn>
 <asp:BoundColumn
DataField="Customer_Lastname" ReadOnly="True" HeaderText="Account Holder Lastname"
HeaderStyle-Font-Bold="true" HeaderStyle-ForeColor="#ffffff"></asp:BoundColumn>
 </Columns>
 </asp:datagrid></div>
 </form>
 </body>
</HTML>

GetInventoryAccountsClient.aspx

<%@ Import Namespace="System.Data.SqlClient" %>
<%@ Import Namespace="System.Data" %>
<%@ Page Language="vb" %>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML>
 <HEAD>
 <title>Get Inventory Accounts Client</title>
 <!--
Filename: GetInventoryAccountsClient.aspx

 110

Created Date: 3/28/03
Author: Bob Berbeco
Description: This web page consumes the GetInventory detail function
 in the InventoryDataSvc web service using a web service proxy.
 Results are displayed and editable.
Modifications: 4/13/03 Bob Berbeco - added comments
-->
 <LINK href="..\Styles.css" type="text/css" rel="stylesheet">
 <script runat="server">

 'Page load subroutine
 Public Sub Page_Load(Source As Object, E As EventArgs)
 If Not Page.IsPostBack Then
 BindData()
 End If
 End Sub

 'BindGrid subroutine for data grid configuration
 'Use the web service proxy for retrieval
 Public Sub BindData()

 'Declaration format: Dim variablename As New Namespace.Class
 Dim wsProxy As New GetInventoryAccountsClient.InventoryDataService
 InventoryItems.DataSource = wsProxy.GetInventory()
 InventoryItems.DataBind()
 End Sub

 'Data grid edit subroutines - get item index and change data grid display
 Public Sub DataGrid1_Edit(ByVal Source As Object, _
 ByVal E As DataGridCommandEventArgs)
 InventoryItems.EditItemIndex = E.Item.ItemIndex
 BindData()
 End Sub

 'Data grid cancel subroutines - change data grid display back to original
 Public Sub DataGrid1_Cancel(ByVal Source As Object, _
 ByVal E As DataGridCommandEventArgs)
 InventoryItems.EditItemIndex = -1
 BindData()
 End Sub

 'Data grid update subroutines - update the data grid output into database
 Public Sub DataGrid1_Update(ByVal Source As Object, _
 ByVal E As DataGridCommandEventArgs)
 Dim myConnection As SqlConnection
 Dim myCommand As SqlCommand

 'Initiatialize all the updateable text for the update query
 Dim txtQuantity As TextBox = E.Item.Cells(5).Controls(0)
 Dim strUpdateStmt As String

 'Update query
 strUpdateStmt = "UPDATE Inventory SET " & _
 "Quantity = '" & txtQuantity.Text & "' " & _
 "WHERE ID = '" & E.Item.Cells(1).Text & "'"

 111

 'Create connection to database and update table
 myConnection = New SqlConnection(_
 "User
Id=HeadHunter_1;Password=HeadHunter1;database=manufacturing;server=IN-CANC-867126\MP")
 myCommand = New SqlCommand(strUpdateStmt, myConnection)
 myConnection.Open()
 myCommand.ExecuteNonQuery()
 InventoryItems.EditItemIndex = -1
 BindData()
 End Sub
 </script>
 </HEAD>
 <body>
 <p align="left">
 </p>
 <H3>Get Inventory Accounts Client</H3>
 <p><i>Comments:

 Client consumes the GetInventory detail function in the
InventoryDataSvc web
 service using a web service proxy.

 Results are displayed and editable.</i></p>
 <form id="Form1" method="post" runat="server">
 <div id="queryDiv1"><asp:datagrid id="InventoryItems" runat="server"
DataKeyField="ID" PageSize="5" AutoGenerateColumns="False" Height="50px" Width="100%"
DataMember="InventoryItems" CellPadding="2" OnEditCommand="DataGrid1_Edit"
OnCancelCommand="DataGrid1_Cancel" OnUpdateCommand="DataGrid1_Update">
 <HeaderStyle Font-Names="Verdana" Font-Bold="True"
Height="10px" ForeColor="White" BackColor="#003366"></HeaderStyle>
 <ItemStyle Font-Size="13px" Font-Names="verdana"
BackColor="Beige"></ItemStyle>
 <Columns>
 <asp:EditCommandColumn
ButtonType="Linkbutton" UpdateText="Update" CancelText="Cancel" EditText="Edit" HeaderStyle-
Font-Bold="true" HeaderStyle-ForeColor="#ffffff"></asp:EditCommandColumn>
 <asp:BoundColumn DataField="ID"
ReadOnly="True" HeaderText="Inventory #" HeaderStyle-Font-Bold="true" HeaderStyle-
ForeColor="#ffffff"></asp:BoundColumn>
 <asp:BoundColumn DataField="Description"
ReadOnly="True" HeaderText="Description" HeaderStyle-Font-Bold="true" HeaderStyle-
ForeColor="#ffffff"></asp:BoundColumn>
 <asp:BoundColumn DataField="Cost"
ReadOnly="True" HeaderText="Cost" HeaderStyle-Font-Bold="true" HeaderStyle-
ForeColor="#ffffff"></asp:BoundColumn>
 <asp:BoundColumn DataField="Retail"
ReadOnly="True" HeaderText="Retail" HeaderStyle-Font-Bold="true" HeaderStyle-
ForeColor="#ffffff"></asp:BoundColumn>
 <asp:BoundColumn DataField="Quantity"
HeaderText="Quantity" HeaderStyle-Font-Bold="true" HeaderStyle-
ForeColor="#ffffff"></asp:BoundColumn>
 </Columns>
 </asp:datagrid></div>
 </form>
 </body>
</HTML>

 112

MyProxyClass.vb

Option Strict Off
Option Explicit On

Imports System
Imports System.ComponentModel
Imports System.Diagnostics
Imports System.Web.Services
Imports System.Web.Services.Protocols
Imports System.Xml.Serialization

'
'Saturn Web Development Tool
'
Namespace GetCustomerAccountsClient

 '<remarks/>
 <System.Diagnostics.DebuggerStepThroughAttribute(), _
 System.ComponentModel.DesignerCategoryAttribute("code"), _
 System.Web.Services.WebServiceBindingAttribute(Name:="BankDataServiceSoap",
[Namespace]:="http://localhost/rberbeco/UniFrame/BankDataSvc")> _
 Public Class BankDataService
 Inherits System.Web.Services.Protocols.SoapHttpClientProtocol

 '<remarks/>
 Public Sub New()
 MyBase.New
 Me.Url = "http://localhost/rberbeco/UniFrame/BankDataSvc/BankDataSvc.asmx"
 End Sub

 '<remarks/>

<System.Web.Services.Protocols.SoapDocumentMethodAttribute("http://localhost/rberbeco/UniFrame/Ban
kDataSvc/GetCustomerAccounts",
RequestNamespace:="http://localhost/rberbeco/UniFrame/BankDataSvc",
ResponseNamespace:="http://localhost/rberbeco/UniFrame/BankDataSvc",
Use:=System.Web.Services.Description.SoapBindingUse.Literal,
ParameterStyle:=System.Web.Services.Protocols.SoapParameterStyle.Wrapped)> _
 Public Function GetCustomerAccounts() As System.Data.DataSet
 Dim results() As Object = Me.Invoke("GetCustomerAccounts", New Object(-1) {})
 Return CType(results(0),System.Data.DataSet)
 End Function

 '<remarks/>
 Public Function BeginGetCustomerAccounts(ByVal callback As System.AsyncCallback, ByVal
asyncState As Object) As System.IAsyncResult
 Return Me.BeginInvoke("GetCustomerAccounts", New Object(-1) {}, callback, asyncState)
 End Function

 '<remarks/>
 Public Function EndGetCustomerAccounts(ByVal asyncResult As System.IAsyncResult) As
System.Data.DataSet
 Dim results() As Object = Me.EndInvoke(asyncResult)
 Return CType(results(0),System.Data.DataSet)
 End Function

 113

 '<remarks/>

<System.Web.Services.Protocols.SoapDocumentMethodAttribute("http://localhost/rberbeco/UniFrame/Inv
entoryDataSvc/GetInventory",
RequestNamespace:="http://localhost/rberbeco/UniFrame/InventoryDataSvc",
ResponseNamespace:="http://localhost/rberbeco/UniFrame/InventoryDataSvc",
Use:=System.Web.Services.Description.SoapBindingUse.Literal,
ParameterStyle:=System.Web.Services.Protocols.SoapParameterStyle.Wrapped)> _
 Public Function GetInventory() As System.Data.DataSet
 Dim results() As Object = Me.Invoke("GetInventory", New Object(-1) {})
 Return CType(results(0),System.Data.DataSet)
 End Function

 '<remarks/>
 Public Function BeginGetInventory(ByVal callback As System.AsyncCallback, ByVal asyncState As
Object) As System.IAsyncResult
 Return Me.BeginInvoke("GetInventory", New Object(-1) {}, callback, asyncState)
 End Function

 '<remarks/>
 Public Function EndGetInventory(ByVal asyncResult As System.IAsyncResult) As
System.Data.DataSet
 Dim results() As Object = Me.EndInvoke(asyncResult)
 Return CType(results(0),System.Data.DataSet)
 End Function

 '<remarks/>

<System.Web.Services.Protocols.SoapDocumentMethodAttribute("http://localhost/rberbeco/UniFrame/Ban
kDataSvc/UpdateCustomerAccounts",
RequestNamespace:="http://localhost/rberbeco/UniFrame/BankDataSvc",
ResponseNamespace:="http://localhost/rberbeco/UniFrame/BankDataSvc",
Use:=System.Web.Services.Description.SoapBindingUse.Literal,
ParameterStyle:=System.Web.Services.Protocols.SoapParameterStyle.Wrapped)> _
 Public Function UpdateCustomerAccounts() As System.Data.DataSet
 Dim results() As Object = Me.Invoke("UpdateCustomerAccounts", New Object(-1) {})
 Return CType(results(0),System.Data.DataSet)
 End Function

 '<remarks/>
 Public Function BeginUpdateCustomerAccounts(ByVal callback As System.AsyncCallback, ByVal
asyncState As Object) As System.IAsyncResult
 Return Me.BeginInvoke("UpdateCustomerAccounts", New Object(-1) {}, callback, asyncState)
 End Function

 '<remarks/>
 Public Function EndUpdateCustomerAccounts(ByVal asyncResult As System.IAsyncResult) As
System.Data.DataSet
 Dim results() As Object = Me.EndInvoke(asyncResult)
 Return CType(results(0),System.Data.DataSet)
 End Function
 End Class
End Namespace

 114

MyProxyClass2.vb

Option Strict Off
Option Explicit On

Imports System
Imports System.ComponentModel
Imports System.Diagnostics
Imports System.Web.Services
Imports System.Web.Services.Protocols
Imports System.Xml.Serialization

'
'Saturn Web Development Tool
'
Namespace GetInventoryAccountsClient

 '<remarks/>
 <System.Diagnostics.DebuggerStepThroughAttribute(), _
 System.ComponentModel.DesignerCategoryAttribute("code"), _
 System.Web.Services.WebServiceBindingAttribute(Name:="InventoryDataServiceSoap",
[Namespace]:="http://localhost/rberbeco/UniFrame/InventoryDataSvc")> _
 Public Class InventoryDataService
 Inherits System.Web.Services.Protocols.SoapHttpClientProtocol

 '<remarks/>
 Public Sub New()
 MyBase.New
 Me.Url = "http://localhost/rberbeco/UniFrame/WebServices/InventoryDataSvc_1.asmx"
 End Sub

 '<remarks/>

<System.Web.Services.Protocols.SoapDocumentMethodAttribute("http://localhost/rberbeco/UniFrame/Inv
entoryDataSvc/GetInventory",
RequestNamespace:="http://localhost/rberbeco/UniFrame/InventoryDataSvc",
ResponseNamespace:="http://localhost/rberbeco/UniFrame/InventoryDataSvc",
Use:=System.Web.Services.Description.SoapBindingUse.Literal,
ParameterStyle:=System.Web.Services.Protocols.SoapParameterStyle.Wrapped)> _
 Public Function GetInventory() As System.Data.DataSet
 Dim results() As Object = Me.Invoke("GetInventory", New Object(-1) {})
 Return CType(results(0),System.Data.DataSet)
 End Function

 '<remarks/>
 Public Function BeginGetInventory(ByVal callback As System.AsyncCallback, ByVal asyncState As
Object) As System.IAsyncResult
 Return Me.BeginInvoke("GetInventory", New Object(-1) {}, callback, asyncState)
 End Function

 '<remarks/>
 Public Function EndGetInventory(ByVal asyncResult As System.IAsyncResult) As
System.Data.DataSet
 Dim results() As Object = Me.EndInvoke(asyncResult)
 Return CType(results(0),System.Data.DataSet)
 End Function

 115

 End Class
End Namespace

